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Abstract

In 1920, Leon Brillouin discovered a new kind of light scattering – Brillouin scattering –

which occurs as a result of the interaction of light with a transparent material’s temporal

periodic variations in density and refractive index. Many advances have since been made in

the study of Brillouin scattering, in particular in the field of fiber optics. An in-depth

investigation of Brillouin scattering in optical fibers has been carried out in this thesis, and

the theory of stimulated Brillouin scattering (SBS) and combined Brillouin gain and loss has

been extended. Additionally, several important applications of SBS have been found and

applied to current technologies.

Several mathematical models of the pump-probe interaction undergoing SBS in the

steady-state regime have emerged in recent years. Attempts have been made to find

analytical solutions of this system of equations, however, previously obtained solutions are

numerical with analytical portions and, therefore, qualify as hybrid solutions. Though the

analytical portions provide useful information about intensity distributions along the fiber,

they fall short of describing the spectral characteristics of the Brillouin amplification and the

lack of analytical expressions for Brillouin spectra substantially limits the utility of the

hybrid solutions for applications in spectral measurement techniques. In this thesis, a highly

accurate, fully analytic solution for the pump wave and the Stokes wave in Brillouin

amplification in optical fibers is given. It is experimentally confirmed that the reported

analytic solution can account for spectral distortion and pump depletion in the parameter

space that is relevant to Brillouin fiber sensor applications. The analytic solution provides a

valid characterization of Brillouin amplification in both the low and high nonlinearity regime,

for short fiber lengths. Additionally, a 3D parametric model of Brillouin amplification is

proposed, which reflects the effects of input pump and Stokes powers on the level of pump

wave depletion in the fiber, and acts as a classification tool to describe the level of similarity

between various Brillouin amplification processes in optical fibers.

At present, there exists a multitude of electro-optic modulators (EOM), which are used to

modulate the amplitude, frequency, phase and polarization of a beam of light. Among these
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modulators, phase modulation provides the highest quality of transmitted signal. As such, an

improved method of phase-modulation, based on the principles of stimulated Brillouin

scattering, as well as an optical phase-modulator and optical phase network employing the

same, has been developed.

Due to its robustness, low threshold power, narrow spectrum and simplicity of operation,

stimulated Brillouin scattering (SBS) has become a favourable underlying mechanism in

fiber-based devices used for both sensing and telecommunication applications. Since

birefringence is a detrimental effect for both, it is important to devise a comprehensive

characterization of the SBS process in the presence of birefringence in an optical fiber. In this

thesis, the most general model of elliptical birefringence in an optical fiber has been

developed for a steady-state and transient stimulated Brillouin scattering (SBS) interaction,

as well as the combined Brillouin gain and loss regime. The impact of the elliptical

birefringence is to induce a Brillouin frequency shift and distort the Brillouin spectrum –

which varies with different light polarizations and pulse widths. The model investigates the

effects of birefringence and the corresponding evolution of spectral distortion effects along

the fiber, and proposes regimes that are more favourable for sensing applications related to

SBS – providing a valuable prediction tool for distributed sensing applications.

In recent years, photonic computing has received considerable attention due to its numerous

applications, such as high-speed optical signal processing, which would yield much faster

computing times and higher bandwidths. For this reason, optical logic has been the focus of

many research efforts and several schemes to improve conventional logic gates have been

proposed. In view of this, a combined Brillouin gain and loss process has been proposed in a

polarization maintaining optical fiber to realize all-Optical NAND/NOT/AND/OR logic

gates in the frequency domain. A model describing the interaction of a Stokes, anti-Stokes

and a pump wave, and two acoustic waves inside a fiber, ranging in length from

350m-2300m, was used to theoretically model the gates. Through the optimization of the

pump depletion and gain saturation in the combined gain and loss process, switching

contrasts of 20-83% have been simulated for different configurations.
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Chapter 1

Introduction

1.1 Overview

In 1920, a new kind of light scattering was discovered by Leon Brillouin – Brillouin

scattering – which occurs as a result of the interaction of light with a transparent material’s

temporal periodic variations in density and refractive index. The result of this interaction

between the light wave and the material is a change in the momentum of the light wave

(frequency and energy) along preferential angles, similar to the diffraction off a moving

grating. Many advances have since been made in the study of Brillouin scattering, in

particular in the field of fiber sensing and fiber optics.

This thesis focuses on the investigation and applications of Brillouin scattering in optical

fibers. The current chapter introduces the background, motivation, and contributions of the

research work. Section 1.2 describes previously obtained solutions for SBS, which are

numerical with analytical portions, and illustrates the motivation of developing a fully

analytical solution of the Brillouin amplification problem valid for an arbitrary high

depletion. Section 1.3 provides an overview of existing optical phase modulation devices and

techniques and their limitations, and presents an optical phase modulation technique based

on the principles of SBS, which would mitigate the disadvantages of existing technologies.

Section 1.4 focuses on the investigation of a more accurate model of the

polarization-dependent SBS interaction, including the possibility of elliptical birefringence,

and its effect on the SBS process. Section 1.5 presents a polarization-independent technique

to accurately realize all-optical logic gates based on the principles of combined Brillouin

gain and loss in an optical fiber. Section 1.6 explains the thesis contributions, and section 1.7

provides the thesis outline.
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1.2 3D parametric model

Since the discovery of stimulated Brillouin scattering (SBS) in optical fibers, several

mathematical models of the pump-probe interaction undergoing SBS in the steady-state

regime have emerged, which are valid for pulse lengths greater than the phonon relaxation

time [1]. The two-wave interaction is modeled by a system of ordinary differential equations,

which in most cases [2, 3] has solved numerically. However, numerical solutions not lend

themselves easily to the high pump wave depletion-related optimization procedures that are

essential for applications in strain and temperature sensing. For example, distributed sensing,

using an EDFA (Erbium Doped Fiber Amplifier) and distributed Raman amplifiers [4, 5, 6]

has the potential to lead to high pump depletion and would require an appropriately accurate

solution.

Several attempts have been made to find analytical solutions of this system of equations. The

most common is the undepleted pump approximation (UPA), employed in [7], which

imposes the assumption that the pump wave depletion, due to energy transfer between the

pump and probe waves, is negligible. The lack of pump wave depletion is a coarse

approximation which does not reflect the challenges of fiber sensing techniques.

In [8, 9] an analytical solution for a lossless fiber has been attempted without putting limits

on the level of depletion. However, this attempt has been only partially successful – the

system of ordinary differential equations has been reduced to a transcendental equation,

which still has to be solved numerically.

An interesting technique has been used in [1] to find the analytical solutions for a lossy fiber,

placing no limits on the level of depletion in the fiber. The system of ordinary differential

equations has been reduced to a transcendental equation involving an integral, which,

unfortunately, could only be evaluated numerically. As a result, neither intensity distribution

along the fiber, nor Brillouin spectra could be expressed analytically. A variation of the

perturbation technique has been used in [10] with the intention of obtaining an analytical

solution for a lossy fiber. However, a solution in the zero-approximation with respect to the
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attenuation constant has been taken from [9], which, as described above, requires the

numerical solutions of a transcendental equation. Contrary to the claim in [10], only a hybrid

solution has been obtained, which extends the solution in [6] to a lossy fiber, but otherwise

has similar limitations.

Therefore, there is still an unsatisfied need for a fully analytical solution of the Brillouin

amplification problem valid for an arbitrary high depletion, as well as a model which would

characterize the Brillouin amplification process and help mitigate the detrimental effects of

spectral depletion.

1.3 SBS optical phase modulator

At present, there exists a multitude of electro-optic modulators (EOM), which are used to

modulate the amplitude, frequency, phase and polarization of a beam of light [11, 12, 13, 14].

Among these modulators, phase modulation provides the highest quality of transmitted signal

– though at the expense of a widened spectrum. In view of the benefits, optical phase

modulation has various applications in the field of optical networks and data transmission.

The most common phase modulator uses a Lithium Niobate crystal (LiNbO3) [15, 16, 17],

which has an index of refraction that depends linearly on the applied electric field, and a

phase linearly dependent on the index of refraction. As the electric field changes, the

resulting phase is modulated. The achievable variation of the refractive index in Lithium

Niobate is relatively small, requiring either large voltages or long electrode lengths to obtain

sufficient phase modulation. Such modulators may also perform the task of amplitude

modulation.

ThorLabsTM, for example, produces Lithium Niobate phase modulators made of Titanium

Indiffused Z-Cut LiNbO3, which are especially designed to be integrated into transponders.

The Lithium Niobate component is required for all-optical frequency shifting, and

applications such as sensing and data encryption. These phase modulators are designed to
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operate in the 1550 nm range.

JenoptikTM produces integrated optical phase modulators, which employ a combination of

Magnesium oxide (MgO) and Lithium niobate (LiNbO3) crystals to realize phase modulation

in the GHz range. An advantage with JenoptikTM phase modulators is that a relatively low

modulation voltage is required to achieve the desired phase modulation, thus being suitable

for wavelengths in the visible and infrared spectral range.

Other methods of optical phase modulation have also been employed. For example, optical

phase modulation has been achieved in a traveling wave semiconductor laser amplifier [18].

In this work, the optically controlled phase modulation is independent of the signal

wavelength.

In spite of advances made in the area of optical phase modulation, there is still a need in the

industry for developing alternative methods of optical phase modulation and further

improvements to optical networks.

1.4 Polarization effects in SBS

In recent years, due to its robustness, low threshold power, and simplicity of operation,

stimulated Brillouin scattering (SBS) has become a favourable underlying mechanism in

fiber-base devices used for both sensing and telecommunication applications [4, 19, 20, 21].

Since birefringence is a detrimental effect for both, it is important to devise a comprehensive

characterization of the SBS process in the presence of birefringence in an optical fiber, so

that a prediction of the Brillouin frequency shift and birefringence variation over different

sensing lengths can be made. All previous theoretical works [19, 22, 23, 24, 25, 26, 27] are

related to the Brillouin gain variation due to the state of polarization (SOP) change. Although

the effects of fiber birefringence on Brillouin frequency shift and linewidth have been studied

experimentally [28], no report has been made regarding the Brillouin frequency shift

associated with the SOP and birefringence change in relation to the fiber position.
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A quantitative study of the fiber birefringence versus frequency shift is essential in finding

the maximum impact of the fiber birefringence on the measurement precision of temperature

and strain, for distributed Brillouin optical time domain analysis (BOTDA) or Brillouin

optical time domain reflectometry (BOTDR) sensors, since it will be helpful in designing the

best suitable fiber for BOTDA or BOTDR applications as well as optimizing system design.

Early works which investigated the polarization effects on SBS in optical fibers [22, 23, 24,

25] showed that the Stokes gain is strongly dependent on polarization effects, and in [29],

this theoretical work was experimentally confirmed. [26] examines the applications of optical

birefringence in SBS sensing for strain and temperature measurements, while [19] devises a

technique to overcome the sensitivity of pulse delay to polarization perturbations, enhancing

SBS slow light delay. In [27], a vector formalism was used to characterize the effects of

birefringence on the SBS interaction. One such effect was signal broadening as a result of

polarization effects. However, only linearly polarized (LP) pump and signal waves were

investigated in [26, 27]. Additionally, [27] assumed an undepleted pump regime, which has

applications only for short fiber lengths, while the BOTDA and BOTDR often operate on

long fiber distances; the convolution of the birefringence and depletion would induce much

larger distortion on the Brillouin spectrum, and hence lower the temperature and strain

resolution. Thus the undepleted and linear polarized models are not adequate to address real

problems.

The above mentioned works [23, 24, 25, 27, 29], however, treat a steady-state SBS system

where both the pump and Stokes waves are continuous. Additionally, none of these

references investigated the effect of birefringence and polarization on the spectral distortion

– namely Brillouin frequency shift of pulses undergoing SBS. In [19], though pulse length

was taken into account, Brillouin spectrum distortion was not. More importantly, the impact

of the nonlinear effect under different pump powers convoluted with the fiber birefringence

and its impact on the Brillouin spectrum shape and peak shift have not yet been examined.

An extension of [27] was published in the work [30], whereby signal pulses were taken into

consideration and pulse distortion was observed. However, this work still did not take into

consideration the most general case of birefringence, which is elliptical birefringence. Finally,
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none of the aforementioned works investigated the effects of polarization and birefringence

in the combined Brillouin gain and loss regime in an optical fiber.

The authors feel that it was important to investigate a more accurate model of the

polarization-dependent SBS interaction – including elliptical birefringence. Besides being

able to accommodate the most general case of elliptical birefringence, the effects of

polarization mode dispersion (PMD), polarization dependent loss (PDL), phonon resonance

structures, pulse length, as well as the overall attenuation of the fiber must be taken into

account. Finally, since spectral distortion is detrimental for fiber sensing and

telecommunications, an in depth investigation into the effects of birefringence and

polarization on the SBS process, and methods of minimizing these effects have been

investigated.

1.5 Photonic Logic

In recent years, photonic computing has received considerable attention due to its numerous

applications, such as high-speed optical signal processing, which would yield much faster

computing times and higher bandwidths. For this reason, optical logic has been the focus of

many research efforts, and several schemes to improve conventional logic gates have been

proposed. In [31, 32, 33], optically programmable and reversible Boolean logic units are

proposed, consisting of a circuit which is designed by the implementation of a 2 x 2

optoelectronic switch [34]. The drawback of this scheme is that the switching speed of the 2

x 2 switching element is about 106 times slower compared to, for example, a semiconductor

optical amplifier (SOA) based interferometric switch. In view of the speed limitations

inherent in electronic circuits, all-optical data processing devices have become the focus of

many research efforts, especially in optical fibers, as these devices provide compatibility to

fiber links with low connection loss and easy implementation. One category of such devices

is the all-optical logic gate, which is projected to be a main component in future integrated

photonic circuits.
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Some established techniques for achieving functional all-optical logic gates include the use

of integrated optical and waveguide structure Mach-Zehnder interferometers (MZIs) [35, 36,

37] that are often limited by back-reflections of the optical signal, which are minimized by

extending the cladding and substrate layers; the use of nonlinear optical processes in

semiconductor optical amplifiers (SOA), such as four-wave mixing [38] and cross-gain

modulation [39, 40, 41]; and the use of a combination thereof – integrated Mach-Zehnder

interferometers based on SOA [42, 43, 44, 45]. SOA-based techniques are often limited by

the carrier’s recovery time which in turn slows down the operation of the device. In addition,

these techniques often require the use of multiple SOAs to achieve functional all-optical

logic gates, and fall victim to additional noise such as spontaneous emission noise [46, 47],

time dependent modulation due to time jitter, and birefringence induced signal distortion.

Additionally, there exist logic gates proposed by terahertz optical asymmetric demultiplexer

(TOAD) based switches [48, 49, 50, 51]. The TOAD consists of a loop mirror and a

nonlinear element, usually an SOA, which is positioned asymmetrically in the fiber loop. In

addition to the limitations of the SOA mentioned above, the TOAD scheme suffers from a

walk-off problem due to dispersion, intensity losses due to beam splitter, optical circulators,

etc. In addition, if there is an attempt to remedy the aforementioned finite propagation time

of the pulse across the SOA by decreasing the offset length, the decrease in effective SOA

length causes a reduction in contrast ratio of the TOAD switching mechanism, which hinders

the functionality of the logic gate.

Techniques, based on the design of simple passive optical components, also exist. These

techniques include optical logic parallel processors [52] and the multi-output

polarization-encoded optical shadow-casting scheme [53]. Both schemes are based on the

polarization of light, whereby the switching mechanism consists of the polarization switching

of output light. Drawbacks of such schemes include polarization instability, inherent in any

polarization-dependent device, and detrimental diffraction effects.

Other such techniques also exist, such as using a Kerr nonlinear prism to realize

binary-to-gray-to-binary code conversion, whereby the switching mechanism is the deviation
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of light due to nonlinear refraction [54]. However, to function correctly, such a scheme

requires several such prisms and mirrors to be aligned in series, the configuration of which is

both bulky and requires extensive calibration. In addition, very large intensities are required

for the function of the proposed setup.

Fiber nonlinearity-based techniques provide comparable functionality, without the limitations

mentioned above. Among fiber nonlinearity-based logic gates, one of the techniques includes

using the Kerr effect in highly nonlinear fibers (HNLF) to induce birefringence, thereby

rotating the polarization state of an output light wave [55, 56], which represents the optical

gate operation with an ultimate speed limitation above 100 Gb/s. However, one limitation of

this technique is that long fiber lengths introduce polarization instabilities in conventional

single mode fibers. A relatively short fiber length of 2 km was used to realize the XOR gate

in [55]. Since polarization rotation is necessary in [55, 56], the presence of birefringence is

another limitation of the technique, which may cause polarization mode dispersion (PMD) of

the optical signal.

Therefore, there is a need for a polarization-independent technique to accurately realize

all-optical logic gates, which could be realized in the frequency domain through the

combined Brillouin gain and loss spectrum. Polarization maintaining fibers (PMFs) help to

eliminate the influence of polarization mode dispersion (PMD) [57], as well as other

polarization maintaining applications [58, 59]. Using PMFs ensures that the technique based

on combined Brillouin gain and loss is free of polarization induced signal fluctuations at

different positions, which cause spectral distortion.

1.6 Thesis contributions

In this thesis, the mechanisms of stimulated Brillouin scattering, and combined Brillouin gain

and loss, are investigated and applied to the development and improvement of current

technologies.
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Firstly, highly accurate, fully analytic solutions for the Brillouin amplification process have

been discovered, void of any underlying assumptions about the pump and Stokes waves.

These analytic solutions are valid in the 0-100% depletion regimes, which are detrimental for

sensing applications, since depletion and spectral distortion makes it difficult to accurately

measure the center frequency of the spectrum. It is experimentally confirmed that the

reported analytic solution can account for spectral distortion and pump depletion in the

parameter space that is relevant to Brillouin fiber sensor applications. The fully analytic

solutions allowed for the construction of a 3D parametric model which has been used to

characterize the SBS interaction, and as a tool to avoid the undesirable spectral distortion via

limitations of the parameter space that is relevant to Brillouin fiber sensing applications. The

3D parametric model also has applications in photonic logic and, in particular, in the optimal

construction of logic gates.

Furthermore, an improved method of phase-modulation, based on the principles of

stimulated Brillouin scattering, and an optical phase network employing the same have been

developed. This proposed optical-phase modulator mitigates the drawbacks of current

phase-modulation technologies, which require either large voltages or long electrode lengths

to obtain sufficient phase modulation, as in the case of Lithium Niobate based optical phase

modulators.

Additionally, the most general model of elliptical birefringence in an optical fiber has been

developed for a steady-state and transient stimulated Brillouin scattering (SBS) interaction,

as well as the combined Brillouin gain and loss regime. The impact of the elliptical

birefringence is to induce a Brillouin frequency shift and distort the Brillouin spectrum –

which varies with different light polarizations, pulse widths, and degrees of birefringence.

The model presented in this thesis investigates the effects of birefringence on the Brillouin

process, and proposes methods of maintaining a pulse fidelity and full width at half

maximum (FWHM), as compared to non-polarized light in a non-birefringent fiber –

providing a valuable prediction tool for distributed sensing applications and data

transmission. This tool also allows for the avoidance, or mitigation, of detrimental spectral

distortion effects caused by birefringence in optical fibers, providing a means of increasing
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the ease of operation and efficiency of fiber sensing technology.

Finally, configurations to realize all-optical NAND/NOT/AND/OR logic gates in the

frequency domain, based on the principles of combined Brillouin gain and loss in an optical

fiber, have been proposed. Through the optimization of the pump depletion and gain

saturation in the combined gain and loss process, switching contrasts of 20-83% have been

simulated for different configurations. The proposed gates are free from polarization

instabilities and polarization mode dispersion (PMD) which plague current fiber

nonlinearity-based techniques of optical gate construction. A general method of finding

additional optical gate constructions has been proposed in the form of a computer algorithm,

as well as using the 3D parametric model described in Chapter 3. Finally, experimental

configurations have been proposed for the testing and construction of the proposed optical

gates.

1.7 Thesis outline

This thesis contains eight Chapters and is organized as follows.

Chapter 2 is dedicated to the study of the principles of stimulated Brillouin scattering (SBS),

including the concepts of combined Brillouin gain and loss. Standard coupled wave

equations will be derived to mathematically describe the behaviour of the amplitudes of the

interacting waves in the SBS interaction.

Chapter 3 will provide a fully analytical solution of the Brillouin amplification problem,

valid for an arbitrarily high depletion, as well as a 3D parametric model, which can be used

to investigate the Brillouin amplification process.

Chapter 4 will propose an optical phase modulator based on the principles of stimulated

Brillouin scattering, which would avoid or mitigate the disadvantages of existing

technologies.
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Chapter 5 will present a model which describes the complete SBS picture, including

birefringence and polarization effects. The most comprehensive SBS equations, considering

elliptical birefringence effects in an optical fiber, will be presented. Chapter 6 will present a

comparable model for the regime of combined Brillouin gain and loss.

Chapter 7 will describe in detail a polarization-independent technique to construct all-optical

logic gates based on the principles of stimulated Brillouin scattering and combined Brillouin

gain and loss in an optical fiber.

Chapter 8 will conclude the work presented in the thesis, and suggest some possible future

directions.
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Chapter 2

Physics of Brillouin Scattering

2.1 Introduction

The present chapter is dedicated to the study of the principles of stimulated Brillouin

scattering (SBS). Section 2.2 explains the mechanism of light scattering in different media,

while sections 2.3 and 2.4 apply these concepts to particular cases of Brillouin scattering.

Section 2.3 provides an overview of spontaneous Brillouin scattering while section 2.4

describes in detail the case of stimulated Brillouin scattering. Section 2.5 provides an

overview of the concepts of polarization and birefringence in optical fibers. Section 2.6

provides a summary.

2.2 Light Scattering

When an electro-magnetic (EM) wave [60], or light, is launched into a material such as an

optical fiber, the incident EM wave interacts with the molecules of the material, resulting in a

scattering phenomenon. The result is a scattering spectrum. Depending on the intensity of the

incident light, we may get either spontaneous scattering for low intensities of incident light,

or stimulated scattering for high intensities of incident light. Figure 2.1 shows a typical

spectrum for spontaneous scattering from solid state matter. In inelastic scattering, the light

having a lower frequency than the incident light is called the Stokes branch, while the light

having a higher frequency than the incident light is called the anti-Stokes branch.
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Figure 2.1 Schematic of the observed scattered light intensity [1].

Brillouin scattering arises from the interaction of light with propagating density waves,

caused by the part of the χ(3)-nonlinearity of the medium related to acoustic phonons [1, 61].

Brillouin scattering may occur spontaneously when incident light scatters off the sounds

waves that are present in thermal equilibrium. Due to the Doppler effect, the frequency of the

scattered light is downshifted from the frequency of the incident light. Because of this

difference, the incident and scattered waves beat together, causing variations of the density

of the media, which in turn causes refractive index variations. In optical fibers, the incident

light scatters off the refractive index variations in the direction opposite to the direction of

propagation of the incident light, thus giving rise to the Brillouin scattering phenomenon.

Brillouin Scattering may also be stimulated. As mentioned above, for intense beams such as

laser light, traveling in a medium such as an optical fiber, the interaction of the thermally

excited acoustic wave “seeds” the resonance SBS. This phenomenon is known as

electrostriction, during which the tendency of materials is to become more dense in regions

of high optical intensity. Electrostriction creates a dynamic acoustic grating, which in turn

causes variations in the refractive index of the material. As a result, laser light may undergo

stimulated Brillouin scattering (SBS) due to the variations in the medium. SBS is frequently

encountered when narrow-band optical signals are amplified in a fiber amplifier. In fact, SBS

introduces the most stringent power limit, commonly referred to as the Brillouin threshold,

for the amplification or even passive propagation of narrow-band optical signals, such as

those used in telecommunications [62, 63].



14

2.3 Spontaneous Brillouin Scattering

It is important to develop a macroscopic description of the light scattering process, whereby

the light scattering process occurs as a result of fluctuations in material density and

temperature. Assuming that the scattering volume, V, may be divided into smaller volumes,

V’, whereby all the atoms in V’ have the characteristic that they radiate in phase in the θ

direction. Letting Δϵ be the fluctuation of the dielectric constant in the volume V’, then we

have Δε = Δχ , where χ is the susceptibility of the material. This equality is deduced from the

relation ε = 1 + χ. Due to this change in optical susceptibility, an additional polarization is

developed, where 0
~E is the electric field.

0
~~ EP  (2.1)

As a result, the dipole moment becomes
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It is also important to note that the electrostrictive constant of the material, γe, can be

expressed as
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From the field of acoustics [64], the equation of motion for a pressure wave is as follows
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Here v is the velocity of sound inside the material, which is defined thermodynamically as
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where ηs is the shear viscosity coefficient, ηb is the bulk viscosity coefficient, γ is the

adiabatic index, and κ is the thermal conductivity.

To illustrate the nature of the acoustic wave, we propose the following wave equation

  ..~ ccpep tqzi   (2.8)

By substituting (2.8) into the equation (2.5), we see that q and  are related by a dispersion

relation of the form
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Which, after rearranging, can be written in the form







 



 22

2
2 '1

v
i

v
q (2.10)

Which leads to the following expression
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Where Г=ГB is the phonon decay rate, and is related to q in the following way

'2 qB (2.12)

In terms of Brillouin scattering, the phonon decay rate can also be expressed as the inverse of

the phonon lifetime, τB, as follows: ГB=1/τB. Assuming that the incident optical field obeys

the driven wave equation,
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and is described by the following expression
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combining the expressions (2.8) and (2.14), it becomes apparent that the scattered field obeys

the following wave equation
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Where Cs is the compressibility at constant entropy, and k is the wavevector. In the above

expression, the (ω-Ω) term leads to Stokes wave scattering, while the (ω+Ω) terms leads to

anti-Stokes scattering.

In Stokes scattering, the scattered wavevector, k2, may be expressed in terms of the incident

and acoustic wavevector, k1, and q, as follows: k2 = k1 - q, having a frequency ω2 = ω1 - Ω.

The frequency and wavevector of the incident field, ω1 and k1, are related by: ω1 = |k1|c/n,

while the frequency and wavevector of the acoustic wave, Ω and q, are related as follows: Ω

= |q|v.

Efficient scattering can occur only if the frequency and wavevector of the scattered wave, ω2

and k1, are related by the dispersion relation for optical waves, namely: ω2 = |k2|c/n.

Stokes scattering is illustrated on Figure 2.2 below, with scattering angle θ.

Figure 2.2. Stokes Brillouin scattering [1].

(a) Relative orientations of the wavevectors k1 and k2, (b) k1, k2 and q relationship,

(c) Schematic of SBS interaction.
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Since |k1| ≈ |k2|, we have the following relation: |q| = 2|k1|sin(θ/2). According to the

dispersion relation Ω = |q|v, we therefore have the following expression for the acoustic

frequency

Ω1 = 2nω1(v/c)sin(θ/2) (2.16)

Taking into account that the majority of scattering occurs for θ=180°, the maximum

frequency shift becomes: ΩB = 2nω1(v/c). As such, Stokes scattering can be visualized from

a retreating acoustic wave.

The same analysis may be applied to the case of anti-Stokes scattering. The scattered

wavevector, k3, may be expressed in terms of the incident and acoustic wavevectors, k1, and

q, as follows: k2 = k1 + q, having a frequency ω3 = ω1 + Ω. As before, efficient scattering

can occur only if the frequency and wavevector of the scattered wave, ω3 and k1, are related

by the dispersion relation for optical waves, namely: ω3 = |k3|c/n.

Anti-Stokes scattering is illustrated on Figure 2.3 below, with scattering angle θ.

Figure 2.3. Anti-Stokes Brillouin scattering [1].

(a) Relative orientations of the wavevectors k1 and k3, (b) k1, k3 and q relationship,

(c) Schematic of SBS interaction.
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Since |k1| ≈ |k3|, we once again have the following relation: |q| = 2|k1|sin(θ/2). According to

the dispersion relation Ω = |q|v, we therefore have the same expression for acoustic

frequency as in expression (2.16)

Ω2 = 2nω1(v/c)sin(θ/2) (2.17)

Taking into account that the majority of scattering occurs for θ=0° for anti-Stokes scattering,

the maximum frequency shift becomes: ΩB=2nω1(v/c). Anti-Stokes scattering can be

visualized from an oncoming acoustic wave.

2.4 Stimulated Brillouin Scattering

The previous section 2.3 discussed the mechanisms of spontaneous Brillouin scattering,

where the applied optical fields were sufficiently weak to leave the acoustic properties of the

material unaltered. However, if the laser light is sufficiently intense, the incident and

scattered field can beat together, creating a dynamic acoustic grating via electrostriction. The

incident field will then scatter off the acoustic grating at the Stokes frequency and add

constructively with the scattered, Stokes or anti-Stokes, field. In this way, the amplitudes of

the acoustic grating and scattered light are reinforced. Though the χ(3)-nonlinearity of a

medium is rather small, Brillouin scattering can grow exponentially to a large amplitude in

optical fibers.

2.4.1 SBS Generator

There exist two conceptually different configurations in which SBS can be studied [1].

Figure 2.4 shows the configuration of the SBS generator, in which only the laser beam is

applied externally, a pump wave with frequency ω1, while both the Stokes wave with

frequency ω2, and the acoustic wave, are created from the noise within the region of

interaction. The noise is typically generated by the scattering of pump laser light from

thermally-generated density fluctuations (phonons).
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Figure 2.4 SBS generator [1].

2.4.2 SBS Amplifier

Figure 2.5 shows the configuration for a SBS amplifier, in which both the laser and Stokes

fields are applied externally. In this configuration, the pump and Stokes fields are counter-

propagating, and a strong interaction takes place when the frequency of the injected Stokes

wave is equal to that which would be created by the SBS generator. In this manuscript, the

SBS amplifier configuration will be considered.

Figure 2.5 SBS amplifier [1].

2.4.3 Electrostriction

Electrostriction is the tendency of materials to acquire a higher overall density in the

presence of an applied electric field. Certain third-order optical responses are caused by the

electrostriction phenomenon, including stimulated Brillouin scattering (SBS) which is the

focus of this thesis.

We can explain the origin of this effect by taking a look at the change in potential energy per

unit volume of a material placed in the presence of an electric field E.

2
02

1 Eu  (2.18)

Here  is the relative dielectric constant, and 0 is the permittivity of free space. In the

presence of the electric field E


, each molecule experiences a dipole moment
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Ep

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Where  is the molecular polarizability. It follows that the energy of the molecule is

 
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2
02
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As such, the resultant force acting on the molecule is given by

 2
02

1 EUF  


(2.21)

From expression (2.21), it is apparent that the force acting on the molecule pulls it into the

region of increasing electric field strength. Hence, an applied electric field E


onto a material

will result in the molecules of the material, at the vicinity of the applied force, to be pulled in

the direction of increasing field strength. As such, the density in this vicinity will increase, in

turn causing the local index of refraction to change as well. The result is a dynamic acoustic

grating along the length of the fiber, characterized by periodic differences in density, and

consequently the index of refraction.

2.4.4 SBS Coupled wave equations and configuration

The previous section 2.4.3 described the mechanism of electrostriction by which the

dynamic acoustic grating, inherent in stimulated Brillouin scattering, is created. In this

section, we will describe the possible configurations of the laser lights and fiber which allow

us to attain the electrostriction effect most efficiently, and derive the standard coupled wave

equations related to each configuration.

An incident electric field at a certain frequency scatters off the refractive index variations,

the scattered light being at the same frequency as the incident light. As such, the scattered

light interacts constructively with the incident pulse which originally produced the acoustic

disturbance, both mutually reinforcing each other’s existence. The incident pulse, which may

be either a Stokes or an anti-Stokes wave, is launched into the beginning of the fiber z=0,

where z is the coordinate inside the fiber. The pump wave (PW) is launched into the opposite

end of the fiber z=L, where L is the total length of the fiber. This configuration is shown on

Figure 2.6 below.
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Figure 2.6 Schematic arrangement of SBS in a fiber of length L.

Pump and probe configuration: A1(z) – Pump wave, A2(z)– probe wave (incident pulse).

Firstly, we consider the case when the incident pulse has a downshifted frequency as

compared to the frequency of the PW, by a frequency of ΩB=10-11 GHz, also known as the

Brillouin frequency. Such a pulse is called the Stokes wave (SW), and is responsible for

Brillouin gain in the SBS amplifier.

We begin with the equations representing the incident waves involved in the Brillouin

interaction.

      ..,,~
11

11 ccetzAtzE tzi  k (2.22)

      ..,,~
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22 ccetzAtzE tzi   k (2.23)

Where 1
~E represents the pump wave incident at the end of the fiber, and 2

~E represents the

pulse incident at the beginning of the fiber, or Stokes wave. k1, k2 are the wavevectors of the

pump wave (PW) and Stokes waves (SW) respectively, and ω1 and ω2 are the frequencies of

the PW and SW respectively. The acoustic wave may be expressed in terms of material

density distribution, where Ω = ω1 - ω2, q≈2k1, and ρ0 denotes the density of the material.

      ..,,~ 1
101 ccetztz tzi  q (2.24)

The scattered field obeys the wave equation
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Where the polarization iP~ of the medium is given in terms of the electrostrictive constant, e ,

the permittivity of free space, 0 , mean density of the material ρ0, and in terms of density

),(~ tz .

     tzEtztrP e ,~,~,~
0

0 



 (2.26)

The equation of motion for a pressure wave, which we have used to describe the propagation

of the acoustic wave inside the fiber, follows the acoustic wave equation
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Here v is the velocity of sound inside the material, Γ' is the damping parameter, defined as

ΓB=q2Γ', where ГB=1/τB is the inverse of the phonon lifetime, τB. Substituting equations

(2.22)-(2.23) into (2.25) and equation (2.24) into (2.27), we get the following system of

equations describing the interaction of the pump, Stokes and acoustic waves.
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Where α is the fiber attenuation parameter, and q has been denoted as q1, and ρ has been

denoted as ρ1. The following approximations have been made to attain this system of

equations: the phonon propagation distance is considered to be small compared to the

distance over which the amplitude of the acoustic wave fluctuates [1]. For the optical waves,

the slowly-varying amplitude approximation has been applied.
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Figure 2.7 Schematic distribution of the pump and probe intensities during SBS [1].

Figure 2.7 above shows a typical intensity distribution of the pump and Stokes powers inside

an optical fiber, in the steady state regime of SBS.

The incident pulse may also have an upshifted frequency as compared to the frequency of the

PW, such a pulse is called the anti-Stokes wave (ASW), and is responsible for Brillouin loss

in the SBS amplifier. The same analysis may be applied to obtain equations for this case, and

the result will be very similar to the system of equations (2.28)-(2.30), with the difference

that the Stokes wave parameters will be replaced by corresponding anti-Stokes parameters.

In fact, from a physical point of view, since the PW is now downshifted from the ASW by

the Brillouin frequency, the anti-Stokes may be viewed as a new ‘pump wave’ and the PW

may be viewed as a new ‘Stokes wave’.

2.4.5 Combined Brillouin gain and loss coupled wave equations and configuration

In this section we will derive the equations governing the SBS interaction for the case of

simultaneous gain and loss. Following section 2.4.4, we may add an additional wave,

representing the anti-Stokes wave to the pump and Stokes waves described by equations

(2.22) and (2.23):

      ..,,~
33

33 ccetzAtzE tzki    (2.31)

and an additional acoustic field, which results from the interaction of the PW and ASW

      ..,,~ 2
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Repeating the analysis of section 2.4.4, we get the following system of equations, describing

the interaction of the PW, SW, ASW and two acoustic waves [1, 65].
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Where Ω1=ω1 – ω2, Ω2=ω3 – ω1, q1 and q2 are the acoustic wavevectors defined as q1=k1-

k2≈2k1 and q2=k3-k1≈2k1, where k1, k2 and k3 are the wavevectors of the PW, SW and ASW

respectively, defined as cnk ii /


, i=1,2,3.

The configuration related to this case is shown in Figure 2.8, whereby both a Stokes wave

and an anti-Stokes wave are launched into the beginning of the fiber (z=0), while a pump

wave is launched into the end of the fiber (z=L) as usual. This setup allows for simultaneous

Brillouin gain and loss to occur from the interaction of the lights inside the fiber.

Figure 2.8 Schematic arrangement of SBS in a PMF of length L.

PW and pulse configuration: A1 – pump wave, A2 – Stokes wave, A3 – anti-Stokes wave.



25

2.5 Polarization and birefringence

2.5.1 Polarization states

Polarization is a property of waves which can oscillate with more than one orientation [66,

67, 68]. Electromagnetic waves, such as light, exhibit polarization whereby the electric field

vector traces out an ellipse. The shape and orientation of this ellipse (or line) defines the

polarization state. The following Figure 2.9 shows some examples of the evolution of the

electric field vector, with time (the vertical axes), at a particular point in space, along with its

x and y components.

Linear

(a)

Circular

(b)

Elliptical

(c)

Figure 2.9 Different polarization states, figure taken from Wikipedia.

In Figure 2.9(a), the electric field's x and y components are exactly in phase. The net result is

polarization along a particular direction in the x-y plane over each cycle. Since the vector

traces out a single line in the plane, this special case is called linear polarization. In Figure

2.9(b), the x and y components maintain the same amplitude but now are exactly 90° out of

phase. In this special case, the electric field vector traces out a circle in the plane, and is thus

referred to as circular polarization. Depending on whether the phase difference is + or −90°,

it may be qualified as right-hand circular polarization or left-hand circular polarization.



26

The most general case occurs when the x and y components are out of phase by an arbitrary

amount, or 90° out of phase but with different amplitudes, and is called elliptical

polarization. In this case, the electric field vector traces out an ellipse (the polarization

ellipse). This case is depicted in Figure 2.9(c). The ellipse shape may be produced either by a

clockwise or counterclockwise rotation of the field, corresponding to distinct polarization

states.

In summary, in the most general case, the optical field E


is elliptically polarized, but there

exist several combinations of amplitudes and phases which describe particular cases of

polarization. These states of polarization are called degenerate polarization states: linearly

horizontal/vertical polarized light (LHP/LVP), linear ±45° polarized light (L+45P/L-45P),

and right/left circularly polarized light (RCP/LCP).

2.5.2 Polarization ellipse

According to Fresnel’s theory [66], orthogonal components of a field E


may be expressed by

wave equations
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Where Ex(z,t) and Ey(z,t) are the optical field components, which describe sinusoidal

oscillations in the x-z and y-z planes, c is the velocity of propagation of the optical field in

space, and t is time. The simplest solution of equations (2.38) and (2.39) is in terms of

sinusoidal functions. For propagation in the +z-direction, the solutions may be represented as

   xxx kztEtzE   cos, 0 (2.40)

   yyy kztEtzE   cos, 0 (2.41)
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Where E0x and E0y are the maximum amplitudes, ωt-kz is the propagator, and δx and δy are

arbitrary phases of the components respectively. Equations (2.40) and (2.41) can be re-

written in the following way
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After some algebra, the following relations can be derived
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By squaring equations (2.44) and (2.45) and adding them together, the following equation is

obtained
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where δ = δx - δy and δx and δy are arbitrary phases. Equation (2.46) is referred to as the

polarization ellipse, which represents a locus of points described by the optical field as it

propagates. A schematic diagram of the polarization ellipse is shown in Figure 2.10.

Figure 2.10 Polarization Ellipse.
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The polarization ellipse of Figure 2.10 can be expressed in terms of angular parameters: the

orientation angle, ψ, and the ellipticity angle, χ. These angles may be expressed in terms of

the parameters of the polarization ellipse as follows
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2.5.3 Poincaré Sphere

In general, the polarization ellipse is a good way to visualize the polarization behaviour of a

propagating polarized optical beam. However, during the propagation of polarized light, the

orientation and ellipticity angles of the polarization ellipse change. The calculations required

to determine the new orientation and ellipticity angles are time-consuming and tedious. An

alternate representation, which would mitigate these drawbacks is called the Poincaré Sphere

[66, 67, 68, 69], shown on Figure 2.11 below.

Figure 2.11 Poincaré Sphere.

Since any point of a sphere can be represented by the equation x2 + y2 + z2 =1, where x, y

and z are the Cartesian coordinates of the axes of the sphere, it is therefore possible to

express the Poincaré Sphere in terms of the orientation and ellipticity ψ and χ, as follows
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x = cos(2χ)cos(2ψ) (2.49)

y = cos(2χ)sin(2ψ) (2.50)

z = sin(2χ) (2.51)

Equation (2.49)-(2.51) relate the Cartesian coordinates (x, y, z) to the Poincaré Spherical

coordinates (1, ψ, χ).

Applying the time average definition to the polarization ellipse of equation (2.46) yields the

following equation
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Defining the terms of equation (2.52) in the following way
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We obtain the following relation
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Where S0, S1, S2 and S3 are the observables of the polarized field, and are called the Stokes

polarization parameters. The S0 parameter describes the total intensity of the optical beam,

which is usually normalized to 1. The S1 parameter describes the domination of LHP light

over LVP, the S2 parameter describes the domination of L+45P light over L-45P light, while

the S3 parameter describes the domination of RCP light over LCP.
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The normalized Stokes vector may be expressed as S=(S1, S2, S3), and may be used to express

degenerate polarization states as follows: SLHP=(1,0,0), SLVP=(-1,0,0), SL+45P=(0,1,0), SL-

45P=(0,-1,0), SRCP=(0,0,1), and SLCP=(0,0,-1). An elliptically polarized light will have a

Stokes vector whereby S1, S2, S3 ≠ 0, while a first order approximation to unpolarized light

will have a Stokes vector S=(0,0,0).

2.5.4 Birefringence

Birefringence is an optical property of a material having a refractive index which depends on

the polarization and propagation direction of light [1, 61]. The birefringence is often

quantified as the maximum difference between refractive indices exhibited by the material.

In optical fibers, birefringence results from the difference in indices of refraction between the

two principal x- and y- axes, also referred to as the fast and slow axes, since light will

propagate with different speeds along two axes having different indices of refraction.

Intrinsic birefringence results from asymmetry of the fiber core, usually caused by

imperfections of the fiber drawing process. Induced birefringence results from induced stress

on the fiber, such as bending or twisting. For all practical purposes, the fiber manufactured

would possess a various degree of birefringence either due to imperfections in the fiber

drawing process, or in the later cabling and installation processes, as well as environmental

perturbations. The different kinds of birefringence include linear birefringence, which causes

the orthogonally polarized modes to have linear polarizations (LP). Circular birefringence

produces left- and right-circularly polarized (CP) modes, while elliptical birefringence

causes elliptical polarization of the orthogonally polarized modes. The difference in

refractive indices of the principle axes causes the light to travel along orthogonally polarized

modes at different phase velocities, yielding a phase difference between the two waves. The

two waves will arrive at the end of the fiber at different times, causing the output spectrum of

light to spread out, resulting in polarization mode dispersion (PMD). The length of the fiber

required to bring the two polarization modes back in phase and reproduce the original

polarization state is the beat length, LB, defined as LB = λ/Δn, where λ is the wavelength of

light, and n is the refractive index.
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2.6 Summary

In conclusion, nonlinear optics studies the interaction between moderate and intense optical

fields. When light travels through matter, various scatterings, which are caused by

fluctuations of the optical properties of the medium can occur. The spontaneous Brillouin

scattering arises from the interaction between a light wave and an acoustic wave. The

acoustic wave can be considered as a propagating grating that diffracts the incident wave and

induces the periodic variation of the material density, and consequently, the refractive index

change. The diffracted wave experiences a frequency shift with an amount proportional to

the acoustic velocity inside the material due to the Doppler Effect. Stimulated Brillouin

scattering arises from the electrostriction caused by the incident optical fields. When two

counter-propagating light waves are present inside the fiber, the beating of these two waves

can induce the density and refractive index variation caused by electrostriction. The acoustic

wave inside the fiber is enhanced when the beat frequency of the two lightwaves matches

with the frequency of the acoustic wave. The scattered Stokes wave is then increased by the

enhanced acoustic wave. The positive feedback between the acoustic wave and the scattered

Stokes wave leads to Stimulated Brillouin scattering. This mechanism can also include both

the Stokes and anti-Stokes waves, to yield combined Brillouin gain and loss in an optical

fiber. In this regime, there are two scattered waves, the SW and the ASW, and two counter-

propagating acoustic gratings inside the optical fiber.

Since SBS originates from the mixing of the two light waves, the efficiency of this effect is

polarization dependent. Polarization states arise from the oscillation of the electric field with

different orientations in a polarization ellipse. A Poincaré sphere is used to derive Stokes

vectors, which are used to define polarization states. Birefringence is an optical property of a

material having a refractive index which depends on the polarization and propagation

direction of light, and is defined as the maximum difference between the refractive indices

exhibited by the material. In optical fibers, this is the difference between the indices of

refraction of the x- and y- principal states of polarization.
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Chapter 3

3D parametric model

3.1. Introduction

As described in section 1.2, previously obtained solutions for SBS are numerical with

analytical portions, and, therefore, qualify as hybrid solutions. Though the analytical portions

provide useful information about intensity distributions along the fiber, they fall short in

describing spectral characteristics of the Brillouin amplification conveyed by the

transcendental equation. The lack of analytical expressions for Brillouin spectra substantially

limits the utility of the hybrid solution [8] for applications, since spectral measurement is a

leading technique for strain and temperature sensing. Methods of avoiding systematic errors

in distributed fiber sensing are described in [3, 70, 71, 72], but do not include the correct

conditions under which an undesirable effect of spectral distortion occurs in optical fibers,

nor how to more accurately obtain a Lorentzian profile for sensing applications.

We propose a 3D parametric model of Brillouin amplification that will reflect the effects of

input pump and pulse powers on the level of pump wave depletion in the lossless fiber, and

act as a classification tool to describe the level of similarity between various Brillouin

amplification processes in optical fibers. This model is valid in any power regime capable of

sustaining SBS, corresponding to 0<Ppump<10mW and 0<PStokes<40mW, and for an arbitrary

depletion of the PW and pulses, acting as an effective, universal, tool for avoiding the

undesirable spectral distortion via limitations of the parameter space that is relevant to

distributed Brillouin fibers.

Additionally, the 3D parametric model has been used to find fully analytic solutions for

calculating the distribution of a pump wave (PW), which has been taken to be a continuous

wave, and a Stokes wave (SW) intensities and phases, for an arbitrary pump depletion

(0-100%), and an arbitrary range of pump and pulse intensities, in fiber lengths of up to a
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few kilometers. These solutions are valid for expressing the Brillouin spectrum under

different depletion conditions, including the spectral distortion effect that occurs for high

levels of pump depletion and high Stokes powers, which has been confirmed experimentally.

3.2 Model

The process of stimulated Brillouin scattering has been studied in a lossless single mode

optical fiber, with core radius of 4.1μm. Attenuation terms have been neglected due to the

short fiber lengths inherent in the model. The schematic arrangement and typical intensity

distributions are shown on Figures 2.6 and 2.7 in Chapter 2.

In the slowly varying amplitude approximation, recall that the steady state interaction

between the PW, the SW and an acoustic wave (AW1) is described by the following system

of equations [9]. The system operates in the steady-state regime when pulse lengths greater

than 10ns.

21
0

11

2
A

nc
i

z
A e 








 (3.1)

1
*
1

0

22

2
Aρ

ncρ
γiω=

z
A e




(3.2)

  *
21

2
1

11
2
1

2

4
AAqi e

BB 


  (3.3)

Where:
Ω1=ω1 - ω2

A1 – complex amplitude of the PW
A2 – complex amplitude of the SW
ρ1 – complex amplitude of the AW1

caused by interaction of PW + SW
ω1 – angular frequency of the PW
ω2 – angular frequency of the SW
γe – electrostrictive constant
z – coordinate along the fiber
q1 – acoustic wavevector: q1≈2k1

Ω1 – angular frequency of the AW1

caused by interaction of PW + SW

ΩB – Brillouin frequency: 12n ω
c
v=ΩB 

c – speed of light
ρ0 – density of the fiber
ΓB – Brillouin linewidth
v – speed of sound in the fiber
n – index of refraction of the fiber
k1 – wavevector of the PW: |k1|=nω1/c
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Recall that in the above arrangement, the SW input parameters are known only at the

beginning of the fiber, i.e. at z=0. Correspondingly, the PW input parameters are known only

at the end of the fiber, i.e. at z=L, where L is the length of the fiber. Therefore, the boundary

conditions for system of equations (3.1)-(3.3) are as follows

|A1(L)|2 = A210; |A2(0)|2 =A220 (3.4)

where A210 and A220 are known squared absolute values of the complex amplitudes A1 and A2,

respectively.

The goal is to find analytical expressions for the intensities and phases of the PW and SW.

Introducing the intensities of the waves as  2
2π ii Anc=I , where Ii is the intensity of the i-th

wave, the system of equations (3.1)-(3.3) is transformed into the following system of

equations (3.5)-(3.7).
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Equations (3.5)-(3.7) are similar to those derived in [8]. Correspondingly, the boundary

conditions (3.4) become as follows, where I10 and I20 are the input intensities of the PW and

SW respectively

|I1|2z=L= I10; |I2|2z=0=I20 (3.9)
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Let us also further introduce the dimensionless variables l, Y1, Y2 and Yacoustic by the following

relations

L
zl  ;

10

1
1 P

PY  ;
20

2
2 P

PY  ;
2

0

1




acousticY (3.10)

where L is the length of the fiber, P10 is the input power of the PW, P1 is the power of the PW

inside the fiber, P20 is the input power of the SW and P2 is the power of the SW inside the

fiber, where the following relation was used: P=I∙πr2, where r is the radius of the fiber. For

the convenience of notation, let us introduce dimensionless coefficients β1, β3 and β5 which

determine the rate of energy transfer for the PW, SW and AW1 correspondingly:
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In the dimensionless notation, the system of equations (3.5)-(3.7) becomes

211
1 YY=β

dl
dY

(3.14)

213
2 YY=β

dl
dY (3.15)

215 YYβYacoustic  (3.16)

Correspondingly, the boundary conditions

Y1(1)=1; Y2(0)=1 (3.17)
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3.3 Solution

The following analysis will be performed on the system of equations (3.14)-(3.16) to

determine the dimensionless intensities Y1 and Y2 of the interacting optical waves, in a similar

way to the one performed in [8].

Since β3≠0, we can find the product of Y1 and Y2 from equation (3.15), and substitute the

product into equation (3.14), determining thereby the first integral of the system

12
3

1
1 C=Y

β
βY  (3.18)

Determining the arbitrary constant C1 from the boundary conditions (3.17) at ℓ=0, we yield

 
3

1
11 0

β
βY=C  (3.19)

where Y1(0) is the output intensity of the PW. Finding Y2 from the first integral (3.18) and

substituting it into equation (3.14), we yield the following differential equation for Y1

 1113
1 CYY=β

dl
dY

 (3.20)

Since Y2(ℓ) is a monotonically increasing function of its argument, starting from Y2(0)=1, and

assuming that the PW is never depleted completely, we conclude that Y1≠0 and Y2≠0 for any

ℓ∊[0, 1]. Therefore, it follows from (3.18) that Y1-C1 ≠ 0. This allows for separation of

variables in (3.20), resulting in the following second integral of the system of equations

(3.14)-(3.16).
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∫ dY 1

Y 1⋅(Y 1−C1)
=∫β3⋅dl+ C3 (3.21)

Determining the arbitrary constant C3 from the boundary conditions (3.17) and introducing a

dummy variable τ, we yield
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Expression (3.22) contains the yet unknown output intensity Y1(0) of the PW as a part of the

arbitrary constant C1. At ℓ=0, the expression (3.22) turns into a nonlinear equation for

determining Y1(0)
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Once Y1(0) is determined from (3.23) and Y1(ℓ) is determined from (3.22), Y2(ℓ) can be found

from the first integral (3.18) as follows
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2 +YlY

β
β=lY  (3.24)

Here we will only consider the case when C1≠0. The integrand can be expanded into a sum

of simple fractions, each fraction being continuous on the interval of integration [Y1(ℓ), 1].
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Integration and further simplification yield
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Correspondingly, from (3.24) it follows that

  SWG=lY 12 ; Y1(0) ≠ β1/β3 (3.27)
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is the gain the SW experiences. Expression (3.27), re-written in terms of dimensional

intensities I1(z) and I2(z), coincides with the expression for the intensity of the Stokes wave in

[8].

The solution of the system of equations (3.14)-(3.16) for the intensities (3.26) and (3.27) is

not complete until an expression for the output intensity Y1(0) of the PW is determined,

which corresponds to the root of the transcendental equation [8], shown in expression (3.29).

As such, previously known solutions, being formally analytical, require the numerical

solution of expression (3.29). Therefore, for all practical purposes, previously obtained

solutions are better qualified as hybrid solutions (i.e. partly numerical or graphical and partly

analytical).
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Unfortunately, the simplified equation (3.29) has many undesirable mathematical properties,

which make the equation ill-suited even for numerical, let alone analytical, solution. Indeed,

the left part of the equation is not a continuous function, the equation has more than one root,

and for β1/β3<1 the removable singularity of Y1(0)=β1/β3 falls within the interval of physical

significance of Y1(0)∊(0, 1].

The analytical solution of Y1(0) lies in transforming equation (3.29) into a form suitable for

analytical approximation. This form is shown below as expression (3.30).
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The transcendental equation of (3.30) has a single root “Y1(0)” that depends only on two

dimensionless parameters β1 and β3, i.e. Y1(0)=x(β1,β3). Additionally, this root falls within the

range [0,1] which represents the range of possible dimensionless output intensities of the PW,

giving it a physical significance.

Using equation (3.27), we get the following expression for the output intensity of the SW,

assuming Y1(0) is known.

    0111 1
1

3
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
 (3.31)

3.4 Analytic Solutions

Fully analytic expressions (3.26) and (3.27) can only be complete when an analytic

expression for Y1(0) is found. Since we are looking for a solution placing no limits on Y1(0),

let us expand the left-hand side (LHS) of the equation (3.30) into a MacLauren series with

respect to the variable β3. If we define, for convenience, x=Y1(0), and
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Thus, the equation (3.30) takes a form suitable for finding approximate analytical solutions.
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3.4.1 Linear approximation

Keeping only linear terms in (3.32) we yield the simplest approximation as follows
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Collecting like terms and solving for “x” yields
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If better accuracy is required, the quadratic approximation is in order.

3.4.2 Quadratic approximation

Keeping additionally β32 terms in (3.32), we yield the next approximation as follows
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After some simple but tedious algebra, we obtain a more accurate expression for the output

intensity of the PW.
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where xlinear is the output intensity of the PW in the linear approximation, defined by (3.33).

In a similar way, one can also get the cubic and quartic approximations, which we do not

show here due to their complexity.

3.5 Relative error

To gauge the accuracy of our analytical solutions (3.33) and (3.34), we compare them to the

numerically calculated solution for the output dimensionless PW intensity. The

transcendental equation (3.30) lends itself to numerical solution with the use of standard

methods of computational physics.
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3.5.1 Linear Approximation

The relative error is less than 33% in the worst case, on the interval 0<β1<25.4, 0<β3<6.4, in

this case, corresponding to 0<Ppump<10mW , 0<PStokes<40mW, as it is shown on Figure 3.1

below.

Figure 3.1 Relative error of Y1(0): Linear Approximation of 3D parametric model of output PW.

L=1000m, 0<Ppump<10mW , 0<PStokes<40mW
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3.5.2 Quadratic Approximation

The relative error of the quadratic approximation is shown on Figure 3.2 below.

Figure 3.2 Relative error of Y1(0): Quadratic Approximation of 3D parametric model of output PW.

L=1000m, 0<Ppump<10mW , 0<PStokes<40mW

The relative error of the quadratic approximation is 6.5% in the worst case, which is more

than three times smaller than the relative error given by the linear approximation.

Notice, however, that except for a limited combination of parameters for which there is an

increase in relative error, deemed to be the “worst case”, the relative error in most of the

calculations shown in Figures 3.1 and 3.2 is 0%. This confirms the utility of the analytic

approximations.
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3.6 3D parametric model

An analytic 3D parametric model, attained by plotting the linear approximation solution as a

function of dimensionless parameters β1 and β3 is shown in Figure 3.3 below.

Figure 3.3 Linear Approximation of Y1(0): 3D parametric model of output PW.

Dimensionless output intensity of the PW versus dimensionless parameters β1 and β3.

γe=0.902, v=5616 m/s, n=1.48, λ=1.319μm, ρ0=2.21 g/cm3, ΓB = 0.1 GHz

L=1000m, 0<Ppump<10mW , 0<PStokes<40mW

As can be seen from Figure 3.3, the linear approximation (3.34) covers the entire range of

values of output intensities of the PW (i.e. from weak depletion, to full depletion when

Y1(0)~0). In spite of its simplicity, this 3D parametric model is valid in a wide range of

combinations of dimensionless parameters β1 and β3.

Using equation (3.31), a similar 3D parametric model for the output Stokes intensity is

calculated and shown below in Figure 3.4.
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Figure 3.4 Linear Approximation of Y2(ℓ): 3D parametric model of output SW.

Dimensionless output intensity of the SW versus dimensionless parameters β1 and β3.

γe=0.902, v=5616 m/s, n=1.48, λ=1.319μm, ρ0=2.21 g/cm3, ΓB = 0.1 GHz

L=1000m, 0<Ppump<10mW , 0<PStokes<40mW

As expected, while the PW experiences depletion, the SW experiences amplification.

3.7 3D parametric model: Similar and Dis-similar Processes

The 3D parametric model for the output PW intensity allows for the easy interpretation of

the effects of pump and pulse powers on the level of PW depletion in the fiber. Parameters of

the fiber are described in Figures 3.3 and 3.4, and the range of pump and Stokes powers

0<Ppump<10mW, 0<PStokes<40mW, correspond to the following range of dimensionless

parameters β1 and β3: 0<β1<6.4 ; 0<β3<25.4. This power range models PW depletion from

0-100%, corresponding to 0<Y1(0)<1 from Figure 3.1. For example, restricting the range of

SW power to 1.6 mW<PStokes<40 mW yields a depletion of 55-100%. Further changes in SW

power change the level of depletion accordingly. Being a very versatile model, a change in

Stokes power, parameters of the fiber, or fiber length would alter the restrictions on β1 and β3,
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therefore allowing for the “picking and choosing” of the preferred level of depletion for the

given fiber. For example, in optical fibers it is often preferable to avoid large depletion,

which would require a Stokes power of <1.6mW for the parameters given in Figures 3.3 and

3.4.

The study of analytical solutions for the output PW intensity Y1(0) have led us to notice that

certain patterns of similarity exist between various amplification processes in each regime,

even though each process may be described by different combinations of parameters of

amplification. On this basis, a system of classification of the Brillouin amplification

processes has been developed and is described below for the PW and SW arrangement.

Below, we will provide several definitions which characterize the 3D parametric model.

Statement 1.

Any Brillouin amplification process in a lossless media can be characterized by two

dimensionless parameters, β1 and β3, determining the outcome of energy exchange between

the PW and the SW.

Statement 2.

All possible outcomes of energy exchange between the PW and the SW are described by the

relation Y1(0)=F(β1,β3) and can be graphically depicted as a 3D parametric model, each point

on the surface corresponding to a subset of Brillouin amplification processes, determined by

the values of the dimensionless parameters β1 and β3.

Definition 1.

A point on the 3D parametric model of Statement 2, corresponding to a subset of Brillouin

amplification processes, determined by the values of the dimensionless parameters β1 and β3,

is called the representative point.

Definition 2.

Two Brillouin amplification processes are called similar if they are characterized by the same

representative point.
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Definition 3.

Two Brillouin amplification processes are called dis-similar, if they are characterized by

different representative points.

Definition 3.

The degree of similarity between two Brillouin amplification processes A and B is

determined by the distance between their representative points, a bigger distance indicating a

smaller degree of similarity, and vice versa.

Figure 3.5 below shows an example of two similar, and two dis-similar processes. Processes

A and B are represented by points A and B, while Process C is represented by point C.

Figure 3.5 Linear Approximation of Y1(0): 3D parametric model of output PW.

Dimensionless output intensity of the PW versus dimensionless parameters β1 and β3.

γe=0.902, v=5616 m/s, n=1.48, λ=1.319μm, ρ0=2.21 g/cm3, ΓB = 0.1 GHz

L=1000m, 0<Ppump<10mW , 0<PStokes<40mW
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Example 1.

Similar Processes: (β1)A=3.18, (β3)A=1.59 , (β1)B=3.18, (β3)B=1.59

Process A: γe=0.902, ω1=8.381097∙105 GHz, ω2=8.380692∙105 GHz, Ω1=4.053668∙101 GHz,

ΩB=4.053668∙101 GHz, P10=6.3 mW, P20=12.7 mW, n=1.48, c= 299792.458 km/s, v=5000 m/s,

ρ0=2.21 g/cm3, ΓB = 0.1 GHz, r=4.1 μm, L=350 m.

Process B: γe=0.8, ω1=8.381097∙105 GHz, ω2=8.380692∙105 GHz, Ω1=4.053668∙101 GHz,

ΩB=4.053668∙101 GHz, P10=3.2 mW, P20=6.3 mW, n=1.15, c=299792.458 km/s, v=5000 m/s, ρ0=1.74

g/cm3, ΓB = 0.1 GHz, r=4.1 μm, L=350 m.

Dis-similar Processes: (β1)A=3.18, (β3)A=1.59, (β1)B=4.07∙10-1, (β3)B=6.79∙10-2

Process A: γe=0.902, ω1=8.381097∙105 GHz, ω2=8.380692∙105 GHz, Ω1=4.053668∙101 GHz,

ΩB=4.053668∙101 GHz, P10=6.3 mW, P20=12.7 mW, n=1.48, c= 299792.458 km/s, v=5000 m/s,

ρ0=2.21 g/cm3, ΓB = 0.1 GHz, r=4.1 μm, L=350 m.

Process C: γe=0.7, ω1=8.381097∙105 GHz, ω2=8.380692∙105 GHz, Ω1=4.053668∙101 GHz,

ΩB=4.053668∙101 GHz, P10=4.2 mW, P20=25.3 mW, n=1.53, c= 299792.458 km/s, v=5000 m/s,

ρ0=2.21 g/cm3, ΓB = 0.8 GHz, r=4.1 μm, L=350 m.

3.8 Applications in Fiber Sensing

Classification of the Brillouin amplification processes, in terms of their degree of similarity

as described above, may have useful applications in the design of various devices based on

Brillouin scattering, such as fiberoptic sensors. Indeed, a design specification for a device is

likely to require that a certain level of output signal be achieved within a certain margin to

ensure normal operation of the device. Practice shows that there often exist severe design and

technological constraints for many such devices; therefore, though theoretical considerations

may suggest a combination of parameters of the Brillouin amplification process which meets

the design specification requirements, this theoretical combination may be impractical,

expensive, or simply unavailable technologically. In this case, the 3D parametric model

would be useful in finding an alternate combination of parameters that is available

technologically, and which either meets the requirements of the design specification or is

reasonably close to it. Such a model would allow for the quick and inexpensive attainment of



49

the maximum utility and performance from such a device.

3.9 Spectral Characteristics

3.9.1 Analytical expressions

The starting point in the analysis of analytical expressions for Brillouin output spectra are the

previously derived expressions for the output intensities of the PW x(β1, β3), expressed in

equation (3.34), and the SW μ(β1, β3), expressed in equation (3.31). Denoting x=Y1(0) and

μ=Y2(1), the following standard approximations are made.
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With these approximations in mind, we yield instead of (3.34) much simpler expressions

(3.36) and (3.37).
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Analytical expressions for the full width at half maximum (FWHM) of the spectra may also

be obtained, valid for 0-100% nonlinearity. For the simplicity of notation, we introduce

x0=x(0), μ0=μ(0) and recall that b=β10/β30.
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Using the expressions (3.26) and (3.27), we are able to describe the behaviour of the PW and

SW at every coordinate inside the fiber, and the corresponding output intensity spectrums

obtained from expressions (3.36) and (3.37) above.

Figure 3.6 Analytical results, normalized intensity units of the SW.

PSW (mW) = ○ 0.01; △ 1.8; ☓ 6.6; □ 12.1; ▽ 17.1; + 22.4; ⁕ 27.2; --- 31.8; ▬ 36.3

n=1.48, γe=0.902, λ=1319nm, ρ0=2.21 g/cm3, v=5616 m/s, L=1000 m, ΓB=0.1 GHz, PPW = 1.0 mW.

Looking at the Stokes wave spectrum in Figure 3.6, we can see that spectral distortion occurs

with increasing Stokes wave power. Energy is transferred from the Pump (higher frequency)

to the SW (lower frequency). A strong SW signal can induce pump depletion [73], since it
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causes the pump to transfer more energy. However, since PPW<PSW, saturation effects occur

because there is not enough energy supplied by the Pump.

To better demonstrate the correlation between pump depletion and SW spectrum distortion,

the Ratio=FWHM/GSW is plotted versus pump depletion in Figure 3.7 for various Stokes

powers, where FWHM is the full width at half maximum of the Stokes spectrum from

expression (3.39), and GSW is the gain of the SW from expression (3.28). The more distorted

the Stokes spectrum, the higher its Ratio value will be. Depletion of the pump was calculated

using expression (3.26).

Figure 3.7 Pump depletion as a function of Stokes spectral distortion.

PSW (mW) = ○ 0.01; △ 1.8; ☓ 6.6; □ 12.1; ▽ 17.1; + 22.4; ⁕ 27.2; ■ 31.8; ♦ 36.3

n=1.48, γe=0.902, λ=1319nm, ρ0=2.21 g/cm3, v=5616 m/s, L=1000 m, ΓB=0.1 GHz, PPW = 1.0 mW.

As can be seen from Figure 3.7, the stronger the Stokes power, the greater the pump

depletion. Consequently, the spectral distortion of the SW spectrum is higher (higher Ratio).

The Lorentzian shape of the spectrum then becomes flattened and the FWHM increases, as

saturation effects begin to become prominent. As such, an output Lorentzian Stokes wave

spectrum (low Ratio) is an indication of low pump depletion, while an increase in spectral

distortion (high Ratio) is symptomatic of an increase in pump depletion and saturation

effects.
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Pump depletion is detrimental in the field of fiberoptic sensing devices, since it causes a

deviation of the peak frequency of the recorded spectrum from the local Brillouin frequency

shift, resulting in a systematic error in temperature/strain evaluation [73]. Hence, a

Lorentzian SW spectral shape is desired to ensure minimal pump depletion. It is possible to

use the 3D parametric model to avoid parameter combinations which would lead to such a

spectral distortion effect and, instead, choose parameter combinations which would yield an

approximate Lorentzian profile. This will be described in more detail in section 3.9.2.

3.9.2 Transition to a Lorentzian Spectra (Curvature)

As can be seen from Section 3.9.1, in the nonlinear case, the general expression for the

Stokes wave spectrum (3.37) does not represent a Lorentzian profile. However, it can be seen

from Figure 3.6, as well as experimental results (Figure 3.10 below), that for certain

combinations of parameters, the output SW spectrum is very close, if not indistinguishable,

from the Lorentzian spectrum. In this section, the conditions for which the output PW and

SW spectra have a Lorentzian profile will be determined, within a given level of tolerance.

Since a purely Lorentzian spectrum is characteristic of linear systems, it is expected to occur

for small nonlinearities, i.e. for small 3010 , . Expanding the expression (3.36) and (3.37)

into a power series with respect to 10 and 30 , we get the following linear approximations
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It can be seen from (3.40) and (3.41) that the first (linear) term is representative of a

Lorentzian profile, (while higher terms distort it). Ensuring that these distortions are much

smaller than the Lorentzian term, we require that
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For a nonlinear phenomenon like SBS, the spectral shape inevitably deviates from the

Lorentzian profile as either the pump power ( 30 ), or Stokes power ( 10 ) are increased. It

can be seen from Figure 3.6 that the spectrum becomes flattened more quickly than it widens

in the onset of spectral distortions. As such, the sharpness of the spectral tip is more sensitive

to the changes in the spectral shape, as compared to the FWHM of the spectrum. For this

reason, we measure the deviation of the spectral shape from the Lorentzian shape by using

the relative deviation of the curvature, CR, of the distorted spectral tip as compared to the

Lorentzian spectral tip, according to the following expression.

Lorentz

LorentzPW
R C

CCC 
 (3.43)

Using the standard definition of the curvature of the plain curve, as well as expressions (3.36)

and (3.37) respectively, we yield the following expressions for the curvatures of the PW and

SW, CPW and CSW, respectively.

 12 030010  xxCPW  (3.44)

 12 030030  xxCSW  (3.45)

Where x0, β1 and β3 are defined in (3.38). From expressions (3.40) and (3.41) we find the

curvature of the corresponding Lorentzian profiles (maximum curvature) for the PW and SW,

respectively, is

102LorentzC for the PW (3.46)

302LorentzC for the SW (3.47)

Choosing a tolerance , we get the following inequality for a quasi-Lorentzian spectral shape

RC (3.48)
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Figure 3.8 Shaded area depicts range of β1 and β3 values which yield curvatures within 20% of the

Lorentz Curvature for both PW and SW spectra.

The range of β1 and β3 values for which the tolerance does not exceed 20.0 from the ideal

Lorentzian curvature is shown in Figure 3.8 above. For clarity, the scales along the β1 and β3

axes are different. A tolerance of 20% may not be achieved for β1-values exceeding 0.50,

corresponding to a power range of 0<PSW<0.8mW for fiber parameters in Figure 3.6, while it

is possible to choose any β3-value, which corresponds to the power range 0<PPW<10mW,

provided it is coupled to the correct β1-value.

This reflects the current theory in which weak pulse powers are usually utilized for sensing

applications, since this is the regime in which a Lorentz-like profile may be achieved. As

such, fiber and strain measurements (measurements of the Stokes wave) are best conducted

within the β-parameters shown in Figure 3.8, provided that other factors, not considered here,

do not require otherwise.
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3.10 Experiment

3.10.1 Experimental Setup

The spectral distortion from the previous section is verified with an experiment, the setup of

which is shown in Figure 3.9. Two narrow linewidth (3kHz) fiber lasers operating at 1310

nm are used to provide the pump and Stokes waves, respectively. The frequency difference is

locked by a frequency counter and is automatically swept to cover the Brillouin range. A

12-GHz bandwidth high-speed detector is used to measure the beating signal of the pump

and Stokes waves, providing feedback to the frequency counter to lock their frequency

differences. The pump laser is launched into an optical circulator, which passes through into

the fiber under test (FUT), which is a 1 km Corning SMF-28e capable of sustaining the

relatively high powers needed for the 100% depletion regime. The Stokes laser is launched

into the FUT, to interact with the pump wave, after which it re-enters the optical circulator.

Figure 3.9 Experimental setup.
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3.10.2 Experimental Results

Figure 3.10 Experimental results, normalized intensity units of the SW.

PSW (mW) = ○ 0.01; △ 1.8; ☓ 6.6; □ 12.1; ▽ 17.1; + 22.4; ⁕ 27.2; --- 31.8; ▬ 36.3

n=1.48, γe=0.902, λ=1319nm, ρ0=2.21 g/cm3, v=5616 m/s, L=1000m, ΓB=0.1 GHz, PPW = 1.0 mW.

As can be seen from Figure 3.10 above, the same kind of spectral distortion is seen in the

experimental results as was shown by the analytical expression in Figure 3.6. For both the

experimental and theoretical results, the Lorentzian spectrum is maintained for low depletion,

i.e. when PSW<~PPW , and when PSW>>PPW, the intensity drop at resonance is more and more

gradual, and the shape becomes flatter. The second, smaller peak seen at 12925 MHz is a

result of second-order Brillouin scattering effects [74], which are not taken into consideration

in this work.
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3.11 Summary

Accurate analytic expressions have been obtained for PW Brillouin amplification, describing

the intensities of the PW and SW for any coordinate inside the fiber, without any underlying

assumptions about the behaviour of the pump or Stokes waves. Among these solutions are: (i)

the linear approximation which gives a maximum relative error of 33%, and (ii) the quadratic

approximation which gives a maximum relative error of 6.5%. The nonzero relative errors

stated above apply to the particular collection of parameters chosen in this chapter, however,

the relative error for the above analytic solutions quickly decreases to 0% for the majority of

parameters.

Additionally, analytic solutions for the output pump and Stokes spectra have been obtained to

good accuracy, as well as an expression for the FWHM. These solutions model a spectral

distortion effect, which takes place at high pump depletions and high Stokes powers, and is

confirmed experimentally. In sensing applications, the 3D parametric model may be used to

avoid parameter combinations which yield this unwanted spectral distortion effect, such as in

distributed sensing where PW depletion is substantial.

The 3D parametric model can also be used to classify the similarity between various

Brillouin amplification processes, making it possible to attain the same PW output intensity

with a different collection of parameters of the fiber.
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Chapter 4

SBS Optical Phase Modulator and Network

4.1 Introduction

Like described in section 1.3, there exist several technologies for optical phase modulation,

each having respective drawbacks and limitations. In this section, an optical phase modulator

based on the principles of stimulated Brillouin scattering (SBS) and an optical network using

the same are proposed, which mitigate the disadvantages of current technology.

4.2 Theory

In this section, new results are presented on the phase relationships between a pump wave

(PW), which is taken to be a continuous wave, and a Stokes wave (SW), undergoing

stimulated Brillouin scattering (SBS) in an optical fiber, as depicted in the schematic

arrangement of Figure 2.6 of Chapter 2.

The pump wave is generated by a pump laser source, which may be a tunable laser source,

generating light at about 1549.4 nm, followed by an erbium-doped fiber amplifier (EDFA).

The Stokes wave is generated by a SW laser source, which may also be another tunable laser

source, or an erbium doped fiber laser. The frequency difference between the pump and

Stokes waves is controlled with a phase locked loop which is locked to the resonant Brillouin

frequency, ΩB, of the fiber under test. The optical fiber is a standard single-mode fiber (SMF),

such as those manufactured by Corning.

The interaction between the PW, SW, and an acoustic wave (AW1), created due to

electrostriction in the optical fiber, is described by the steady-state system of equations

(4.1)-(4.3) from section 2.4.4, shown below. As originally introduced in Chapters 2 and 3,
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the angular frequency of the acoustic wave, Ω1, is defined as the frequency difference

between the pump and Stokes waves, ω1 and ω2 respectively: Ω1=ω1-ω2.
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Here, q1 is the acoustic wavevector defined as q1≈2k1, where k1 is the wavevector of the PW,

defined as |k1|=nω1/c. Complex amplitudes of the waves were represented in polar form as
ieAA  , and the system of equations (4.1)-(4.3) was transformed into the following

extended system of equations.
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Where: φ1 – phase of pump wave, φ2 – phase of Stokes wave, and where the β1, β3

-coefficients are defined as in equations (3.11) and (3.12) from chapter 3, with
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where 1ξ is defined in equation (3.8). The sub-system of equations (4.4) and (4.5) can be

solved independently of the remaining sub-systems of equations (4.6) and (4.7) for the PW

and SW interaction, to determine the intensities of the interacting optical waves Y1 and Y2.

Many important properties of the equations (4.4) and (4.5), and (4.6) and (4.7) can be studied

even before the formal solution for the intensities are obtained:

a) The rate of change of the phase of the pump wave is proportional to the intensity of the

Stokes wave and does not depend on the intensity of the pump wave. Similarly, the rate of

change of the phase of the Stokes wave is proportional to the intensity of the pump wave and

does not depend on the intensity of the Stokes wave.

b) The rates of change of both optical waves, the pump and the Stokes wave, have common

β-coefficients of proportionality, as defined in expressions (3.11)-(3.13). The β-coefficients

are comprised of two factors, the first factor being the line-center gain factor for the

intensities of the optical waves:
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The second factor is a form factor

F(ξ1)=
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The form factor determines the shape of the phase spectra of the interacting waves. The

graph of the form factor F(ξ1) is shown in Figure 4.1 below. This general shape is attributed
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to the SBS-induced index change [61], ΔnSBS, which results from changes in the gain (or loss)

of a medium according to the Kramers-Kronig relations [1, 61].

Figure 4.1 Form factor as a function of ξ1.

Since F(ξ1) has two extrema at ξ1=±1, the optimum conditions for observing a phase change

occur when
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Since Ω1 differs very little from the resonant Brillouin frequency, ΩB, for many practical

cases, we may apply the approximation 11 2 B , and the optimum condition for

observing the phase change becomes

21
B B (4.13)

In other words, for intensity spectra having a substantially Lorentzian shape, the optimal

phase change occurs when the pump wave, or the Stokes wave, or both, are detuned from the

resonant Brillouin frequency, ΩB, by about half of the Brillouin linewidth, ΓB, of the optical

fiber. Similarly, the maximum SBS-induced refractive index change also occurs at the

optimum conditions (4.13).
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Though not optimal, for other values of detuning off the resonant Brillouin frequency

between the pump wave and Stokes wave, the phase change also occurs. For example, the

difference of frequencies of the pump wave and the Stokes wave may be conveniently

chosen within a range of about ± 25% from half a Brillouin linewidth.

It must be confirmed that the optimal condition (4.12) does not lead to a negligibly small

intensity of the interacting waves when they are off-resonance. Performing a similar analysis

on the equations (4.4) and (4.5), and (4.6) and (4.7) describing the rate of change of the

intensity of the PW and SW, we note that the equations have a common gain factor (4.14)
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The graph of G(ξ1) is shown on Figure 4.2 below, from which it can be seen that G1(±1)=1/2.

This implies that when the angular frequency of the AW1 follows the relation
2
B

Bi


 ,

the off-resonance gain factor drops only by 50%, as compared with the gain factor at ξ1=0

(line-center gain factor). This means that the optimum condition (equation 4.12) leads to

sufficient intensities, from an experimental point of view, of the interacting waves.

Figure 4.2 Gain factor as a function of ξ1.
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From observation of Figure 4.1, it may be concluded that

F(0)=0 (4.15)

For which we have β5=β7=0, and therefore

0



z
i when Ω1=ΩB, i=1,2. (4.16)

In other words, at the resonant Brillouin frequency, the phases of the pump wave and the

Stokes wave remain constant at every point in the fiber.

Likewise, off-resonance, i.e. When Ω1≠ΩB, we have

|F(ξ1)|>0 (4.17)

For which we have β5, β7 >0. Therefore,

0



z
i , i=1,2. (4.18)

In other words, the phases of the pump wave and Stokes wave change along the fiber if

Ω1≠ΩB i.e detuned from the resonant Brillouin frequency.

4.3 Proposed Experimental Setup

To demonstrate the proposed theory of section 4.2, an experimental setup is proposed, which

is shown in Figure 4.3.
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Figure 4.3 Experimental setup.

The experimental setup is comprised of a SW laser source, a beamsplitter, a pump laser

source, an electronic variable optical attenuator (eVOA), which is used as a source of

amplitude modulation, an active Brillouin scattering optical fiber, a path equalizing optical

fiber, a first and second reflective mirror, a semi-transparent mirror, a screen with tiny

aperture, and a photodiode.

The experimental setup of Figure 4.3 operates as follows. The pump laser source, for

example, a tunable laser source, generates a pump wave, which passes through the eVOA.

The resulting wave is an amplitude modulated pump wave, which is injected into one end of

the active optical fiber. The SW laser source, for example a tunable laser source, generates a

Stokes wave which encounters the beamsplitter, and is split into an incident Stokes wave and

a reference optical signal. The incident Stokes wave is injected into the opposite end of the

active optical fiber, such that the incident Stokes wave and the amplitude modulated pump

wave counter-propagate in the active optical fiber, causing the phase of the incident Stokes

wave to change according to the equation (4.7).

For clarity of the experimental setup of Figure 4.3, the second reflective mirror is

schematically shown as spatially separated from the pump wave. In practice, the second

reflective mirror is replaced with a second semi-transparent mirror.

In accordance with the theory recommendations in the section 4.2 above, the frequency of

the Stokes wave is detuned from the resonant Brillouin frequency to create conditions
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necessary for the phases of the amplitude modulated pump wave and the incident Stokes

wave to change. Preferably, the frequency of the Stokes wave is chosen to satisfy the optimal

conditions as described in equation (4.13) above, to induce a maximum phase change,

thereby making it easier to measure. An output Stokes wave, with the phase changed in

accordance with the chosen attenuation of the eVOA, is reflected off the second reflective

mirror, at about a 90° angle, creating a phase modulated Stokes beam.

The first reference optical signal is reflected at about a 90° angle off a first reflective mirror,

to create a second reference optical signal, which is passed through a path equalizing optical

fiber that is substantially identical to the active Brillouin scattering optical fiber in all

respects. The result is an output reference beam which exits the path equalizing optical fiber,

the purpose of which is to equalize the optical path for the first reference optical signal with

the optical path of the incident Stokes wave, keeping both mutually coherent. Since the

typical coherence length of a typical laser, such as an He-Ne laser, is around 20 cm, the

difference in optical paths between the active Brillouin Scattering optical fiber and the path

equalizing optical fiber should be much smaller than 20 cm, preferably not exceeding several

centimeters.

The output reference beam passes through a semi-transparent mirror, while the phase

modulated Stokes beam is reflected from the semi-transparent mirror, such that both the

output reference beam and the phase modulated Stokes beam converge to create an

interference pattern on the screen with tiny aperture. The angle of convergence is selected to

be small enough (preferably substantially smaller than 1`) to widen the interference pattern,

such as a 10 mm wide interference pattern. The required convergence angle can be estimated

from the expression 2d·sin(ϑ)=λ, where λ is the wavelength, d is the width of the interference

patterns, and 2ϑ is the convergence angle between the phase modulated Stokes beam and the

output reference beam.

When the interference pattern becomes visible, the convergence angle can be adjusted

experimentally as required. To maintain the stability of the interference pattern for the

amount of time required for measurements (presumably ~ 5-10 min), the entire setup is
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preferably mounted on an anti-vibrational table or breadboard, such as produced by Newport

Corporation.

The aperture on the screen with tiny aperture is chosen to be much smaller in diameter than

the width of the light and dark bands of the interference pattern, which permits the light from

the interference pattern to be detected by the photodiode. Initially, the aperture is adjusted to

occupy a position of an interference pattern at about a middle point between a light and a

dark band of the interference pattern, which provides for a substantially linear region of

intensity variation. When the eVOA is controlled to a different attenuation from the initial

attenuation, the phase of the output Stokes wave is expected to change relative to the phase

of the output reference beam, causing the light and dark bands of the interference pattern to

change locations relative to the aperture in the transverse direction. Therefore, the amount of

light that reaches the photodiode changes approximately proportionally to the phase shift,

allowing the phase shift to be measured.

A controllable change of attenuation of the eVOA allows for the measurement of the phase

shift versus the intensity of the amplitude modulated pump wave. Simulation results are

shown in Table 4.1 below.

Table 4.1 Simulation results for the experimental setup

Parameters of the Fiber Detuning Phase Change of SW (rad)

γe=0.902
ω1=8.381097∙105 GHz
ω2= 8.380691∙105 GHz
Ω1=4.053668∙101 GHz
ΩB=4.053668∙101 GHz

n=1.45, c= 299792.458 km/s
v=5000 m/s, ρ0=2.21 g/cm3

ΓB = 0.1 GHz, L=1000 m
PW power: PPW=10mW
SW power: PSW=9mW

B 5.01 B

(optimal conditions)
~1.2

B 25.01 B ~0.2

B 1.01 B ~0.08
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As can be seen from Table 4.1, the phase change of the output Stokes wave is sufficiently

large and suitable for conducting measurements. It has also been noticed that, when the pump

wave is amplitude modulated, the phase change of the output Stokes wave is larger for pump

waves experiencing larger depletion, for example, when the depletion of the pump wave is

larger than about 50%.

Also, the Stokes wave can be amplitude modulated instead of the pump wave, thus causing a

phase modulation of the pump wave.

4.4 Optical phase modulator construction

An optical phase modulator based on the principles outlined in Sections 4.2 and 4.3 is shown

in Figure 4.4 below. It comprises an active Brillouin scattering optical fiber, a pump and SW

laser source, for example tunable laser sources, an eVOA, and a reflective mirror.

Figure 4.4 Optical phase modulator construction.

For clarity of the setup of Figure 4.4, the reflective mirror is schematically shown being

spatially separated from an amplitude modulated pump wave. In practice, the reflective

mirror is replaced with a semi-transparent mirror.

In Figure 4.4, the pump laser source generates a pump wave, the amplitude of which is

modulated by a low frequency signal (for example speech signal, which is not shown) using

the amplitude modulator, such as an eVOA. The resulting amplitude modulated pump wave

is injected into one end of the active optical fiber. A Stokes wave is generated by the SW

laser source, that is injected into the opposite end of the active optical fiber, such that the two

waves counter-propagate in the active optical fiber. The SW laser source is used to detune
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the frequency of the Stokes wave from the resonant Brillouin frequency, causing the phase of

the Stokes wave to change in accordance with the intensity of the amplitude modulated pump

wave. Preferably, the frequency of the Stokes wave is chosen to satisfy the optimal

conditions of equation (4.13), or to tune the difference to about half of a Brillouin linewidth

of the optical fiber, to make the phase change as large as possible, and improve a

signal-to-noise ratio (SNR). An output Stokes wave, the phase of which has already been

modulated, is reflected off the reflective mirror, creating a phase modulated Stokes wave for

carrying the signal, e.g. phase modulated speech signal.

The Stokes wave may also be amplitude modulated independently of the phase modulation,

thus allowing for doubling the amount of information carried by the same phase modulated

Stokes wave. Also, the Stokes wave can be amplitude modulated instead of the pump wave,

thus causing the phase modulation of the pump wave.

4.4 Optical network transmission lines with phase-modulated carriers

It is also possible to construct and optical network employing the optical phase modulator of

section 4.3, which would allow for the transmission of a low frequency signal through an

optical fiber, via the phase-modulated carrier and demodulation of the carrier into the

original low frequency signal.

An optical network utilizing the principles of optical phase modulation from previous

sections is shown in Figure 4.5.
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Figure 4.5 Optical network construction.

The optical network of Figure 4.5 comprises a transmitting and receiving end of the optical

network from Figure 4.3, which are connected via a path in the optical network. The

transmitting end of the optical network comprises a pump laser source, a first beamsplitter,

an SW laser source, an amplitude modulator (eVOA), a low frequency (LF) signal generator,
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an active Brillouin scattering optical fiber, a passive path equalizing optical fiber, a first and

second reflective mirror, a first quarter-wave plate, and a first semi-transparent mirror.

The receiving end of the optical network comprises a second beamsplitter, a first and second

polarization filter, a second quarter-wave plate, a third and fourth reflective mirror, a second

semi-transparent mirror, a screen with a pinhole, and a photodetector.

The path in the optical network comprises a telecommunication fiber acting as a transmission

channel.

The pump laser source generates a pump wave, which may also be referred to as a first

optical signal. The first beamsplitter acts to split the pump wave into a pump wave to be

phase modulated and a reference optical signal, both with parallel polarization.

The SW laser source generates a Stokes wave, which may also be referred to as a second

optical signal. The Stokes wave and a low frequency signal, which is generated by the low

frequency signal generator, are sent to the amplitude modulator which generates an

amplitude-modulated wave, or AM carrier. The AM carrier is injected into one end of the

active optical fiber, while the pump wave to be phase modulated is injected into an opposite

end of the active optical fiber. The pump wave to be phase modulated and the AM carrier

counter-propagate inside the active Brillouin scattering optical fiber, resulting in

transforming the pump wave to be phase modulated into a phase modulated pump wave, also

with parallel polarization.

For clarity of the setup of Figure 4.5, the first reflective mirror is schematically shown as

spatially separated from a AM carrier. In practice, the first reflective mirrors replaced with a

third semi-transparent mirror.

The phase modulated pump wave is reflected off the first reflective mirror, at about a 90°

angle, creating a phase modulated optical signal. Likewise, the reference optical signal enters

the passive path equalizing optical fiber, which acts as an optical path equalizer, and is then
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reflected off the second reflective mirror at about a 90° angle, creating a reference wave. The

reference wave passes through the first quarter-wave plate, which changes its polarization to

a perpendicular polarization, resulting in a first perpendicular polarized reference beam. The

first perpendicular polarized reference beam is perpendicularly polarized, while the phase

modulated optical signal is still parallel polarized.

The phase modulated optical signal passes through the first semi-transparent mirror, resulting

in a polarization perpendicular reference beam, while the first perpendicular polarized

reference beam is reflected, at about a 90° angle, resulting in a polarization parallel phase

modulated beam. Both the polarization perpendicular reference beam and the polarization

parallel phase modulated beam, which in Figure 4.5 are drawn separate from each other only

for the purpose of clarity, enter the telecommunication fiber. Upon exiting the

telecommunication fiber, the polarization perpendicular reference beam becomes a

destination reference beam, and the polarization parallel phase modulated beam becomes a

destination phase modulated beam. Both the destination reference beam and the destination

phase modulated beam encounter the second beamsplitter, which redirects them to the first

and second polarization filters.

The first polarization filter allows only the destination phase modulated beam to pass through,

to be reflected off the third reflective mirror, as well as the second semi-transparent mirror,

to produce a converging phase modulated beam. The polarization filter allows only the

destination reference beam to pass through, creating a second perpendicular polarized

reference beam. The resulting second perpendicular polarized reference beam passes through

the second quarter-wave plate, which is polarization to parallel, resulting in a first parallel

polarized reference beam. The first parallel polarized reference beam is reflected off the

fourth reflective mirror, and passes through the second semi-transparent mirror, producing a

converging reference beam.

The resulting converging phase modulated beam and the converging reference beam, both

with the same polarization, converge at a small angle (preferably smaller than 1`), and

overlap on a screen with a pinhole. The light passing through is detected by the photodetector.
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When the phase of the converging phase modulated beam changes (due to the phase

modulation) relative to the phase of the converging reference beam, the interference pattern,

of variable intensity, shifts in the transverse direction approximately proportionally to the

change in phase. As a result, the intensity of light which passes through the screen with a

pinhole also changes respectively. In this way, the low frequency signal is decoded from the

converging phase modulated beam. Consequently, we were able to transmit the low

frequency signal through an optical network to its destination and restore it at this

destination.

It is also possible to amplitude modulate the pump wave with the amplitude modulator,

independently of the phase modulation, and as mentioned in previous sections, the pump

wave may also be amplitude modulated instead of the Stokes wave, thus causing the phase

modulation of the Stokes wave.

Finally, instead of using two differently polarized beams: the phase modulated optical signal

and the first perpendicular polarized reference beam, propagating through the same

telecommunication fiber, two separate fibers with substantially similar characteristics could

be used so that one fiber propagates the phase modulated optical signal, while another fiber

propagates the first perpendicular polarized reference beam. In this case, both the phase

modulated optical signal and the first perpendicular polarized reference beam may have

similar polarizations, and the second quarter-wave plate will not be needed for producing the

interference pattern.

4.5 Summary

Therefore, an improved method of phase-modulation, based on the principles of stimulated

Brillouin scattering, has been proposed, as well as an optical phase network employing the

same.
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Chapter 5

Polarization Effects in SBS

5.1 Introduction

As described in section 1.4, this chapter will introduce several important applications of

birefringence in optical fibers, relating to telecommunications and fiber sensing. The effect

of the spectral shift due to increased birefringence is investigated, as well as spectral

distortion due to various degrees of birefringence will be investigated for steady-state and

transient pulsed regimes. Namely, the steady-state model presented for linearly polarized (LP)

light will be shown to be a valuable measure of the experimentally realistic case of non-ideal

LP light in optical fibers. The degree of spectral distortion may be used as an indication of

the quality of linear polarization during the SBS interaction, or as a measure of power

leaking between the fast and slow modes. Furthermore, increased power leaking between the

fast and slow modes for LP can be used to create a regime that is more favourable for sensing

applications related to SBS. In the pulsed regime, spectral broadening and depletion of the

Stokes spectrum will be observed as a result of increased birefringence. Spectral distortion is

detrimental for fiber sensing and telecommunications, hence methods of minimizing this

effect are important to investigate.

Additionally, the effects of various elliptical polarizations on output spectral shape will be

investigated for the steady-state model, including spectral spreading effects and spectral

broadening. Methods of maintaining a pulse fidelity and full width at half maximum

(FWHM), as compared to non-polarized light in a non-birefringent fiber, will be proposed.

In this chapter, the most comprehensive SBS equations are presented, considering the

birefringence effects in optical fibers. Besides the usual slowly varying amplitude

approximation, the only extra approximation of the model is the assumption that the phonon

fields are established almost instantaneously, namely, the time it takes for the acoustic
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phonons to build up is considered to be negligible.

5.2 Model

The process of SBS has been studied in a birefringent polarization-maintaining optical fiber

(PMF) with a core radius of 4.1μm. The configuration is comprised of a pump wave (PW)

launched into one end, and a Stokes wave (SW) launched into the other end. Both the PW

and SW have x- and y- eigen-polarization components. The schematic arrangement is shown

in Figure 5.1 below.

Figure 5.1 Schematic arrangement of SBS in an optical fiber of length L.

E1x – Pump wave, E1y – Pump wave, E2x – Stokes wave, E2y – Stokes wave

In the slowly varying amplitude approximation, the interaction between the PW and SW as

shown in Figure 5.1, is described by the system of equations (5.1)-(5.4). The only additional

approximation in establishing the following equations is the assumption that the phonon

fields are established almost simultaneously [1, 9]. The derivation of equations (5.1)-(5.4) is

shown in the Appendix.
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Here  2211  xxBxx nn
c
v  ,  2211  yyByy nn

c
v  ,  2211  yxBxy nn

c
v  ,

 2211  xyByx nn
c
v

 are the Brillouin frequencies associated with the principal axis

beatings [4], where ω1 is the angular frequency of the PW, and ω2 is the angular frequency of

the SW. n1x and n1y, and n2x and n2y, are the indices of refraction associated with the principal

axes of the PW and SW, respectively. Ω1 is the angular frequency of the AW1 caused by the

interaction of the PW and SW. E1x and E1y, and E2x and E2y, are the complex amplitudes of

the PW and the SW, respectively. c is the speed of light, ρ0 is the mean density of the fiber, γe

is the electrostrictive constant, z is the coordinate along the fiber, v is the speed of sound in

the fiber, ΓB is the Brillouin linewidth, and finally, α1x, α1y, α2x, and α2y represent the fiber
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attenuations of the principal axes of polarization of the two interacting waves.

The S1x, S1y, S2x, and S2y represent the Stokes vectors in the Poincaré sphere polarization

representation [68, 69], and are used to define the polarization of the propagating lights [61,

68]. Some extra relations of importance are the following: Sx1 = -Sy1 for forward propagating

light (PW), and Sx2 = -Sy2 for backward propagating light (SW). Furthermore, it is

worthwhile to emphasize that in the above system of equations (5.1)-(5.4), Sx1 describes the

principal state of polarization vector for the forward propagating light, and Sx2 describes the

principal state of the polarization vector of the backward propagating light. In this case, if Sx1

is defined as Sx1 = (a, b, c), then it must follow that Sy1 = (-a, -b, -c), and neglecting the

dispersion effect, then Sx2 = (a, b, -c) and Sy2 = (-a, -b, c), where a, b and c are the Stokes

vector components, the third component, c, describing circular birefringence, and are

normalized such that a2 + b2 + c2 = 1. From this arrangement it is apparent that for fibers

having elliptical birefringence (0 < |c| < 1), the most general beating situation will be excited,

i.e. there will exist four acoustic resonances.

Lastly, some remaining simplifications were introduced to the system of equations (5.1)-(5.4)

to make the birefringence effect more explicit. This can be justified by the fact that

birefringence and polarization dependent loss are both small. It is defined 2
11

1
yx nn

n


 ,

yx nnn 111  , 2
22

2
yx nn

n


 , yx nnn 222  , and 2
11

1
yx 




 , yx 111   ,

2
22

2
yx 




 , yx 222   .

In the above arrangement, the PW input parameters are known only at the beginning of the

fiber, i.e. at z=0. Correspondingly, the SW input parameters are known only at the end of the

fiber, i.e. at z=L, where L is the length of the fiber. Therefore, the boundary conditions for the

system of equations (5.1)-(5.4) are similar to previously-studied configurations with one

pulse [4, 65]. The conditions for two pulses are as follows:

|E1x(0)|2 = E21x0 ; |E1y(0)|2 =E21y0 ; |E2x(L)|2 = E22x0; |E2y(L)|2 = E22y0; (5.5)



77

where E21x0 , E21y0 , E22x0 , and E22y0 , are known squared absolute values of the complex

fields E1x , E1y , E2x , and E2y respectively. In the dimensionless notation, the system of

equations (5.1)-(5.4) becomes
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In the above system of equations (5.6)-(5.9), we have employed the dimensionless length

variable Lz / , the dimensionless time variable ctt / , where
c
nL

t avg
c


 is the transit

time, navg is the average index of refraction, and r is the radius of the fiber core. The

dimensionless intensity variables are defined as the ratio of powers Y1x=P1x/P1x0, Y1y=P1y/P1y0,

Y2x=P2x/P2x0, Y2y=P2y/P2y0. Additionally, ε1x, ε1y, ε2x, and ε2y are the dimensionless loss terms,

defined as xx L 11 2   , yy L 11 2   , xx L 22 2   , and yy L 22 2   . The form factor
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component of the β-coefficients is defined as

2

1

B

Bij
ij 


 , where i=x,y, and j=x,y. The

Method of Characteristics was employed [61, 75, 76, 77] and the following change of

variables was performed, where the approximation nnn  21 was used.

 
n

u 1
(5.18)  

n
v 1

(5.19)

The resulting system of equations is as follows, with β-coefficients as defined in expressions

(5.10)-(5.17).
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  yyyxdyc
y YYYY

dv
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2221313
2   (5.23)

The change of variables u and v transforms the system of equations (5.6)-(5.9) of counter-

propagating waves into the system of equations (5.20)-(5.23) of co-propagating waves.

Consequently, we are able to set the following initial conditions

          1tanhtanh0, 22110  btabtatYij (5.24)

both of which take place at the same end of the new coordinate system, where i=1,2, and

j=x,y. The parameters a1 and a2 determine the rise time of the PW and SW pulse profiles,

while the parameters b1 and b2 define the center of the pulses via the expression |b2-b1|/2.

Though there exist many numerical methods of solution for SBS equations [75, 78, 79, 80,
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81, 82, 83], the fourth order Runge-Kutta method (RK4) was used to numerically solve the

system of equations (5.20)-(5.23), and was chosen for its stability and relatively large step

size. Details of this numerical method of solution are summarized in the Appendix.

5.3. Results and Discussion

Output spectra were calculated by detuning the Stokes frequency, ω2. Output powers were

calculated as P1x-out = P1x0 ∙Y1x-out, P1y-out = P1y0 ∙Y1y-out, P2x-out = P2x0 ∙Y2x-out, and P2y-out = P2y0

∙Y2y-out, and the total power of the pump and Stokes waves was calculated to be P1 = P1x + P1y

and P2 = P2x + P2y respectively. Also, the attenuation in the fiber has been approximated as

α1x=α1y=α2x=α2y=α=0.2 dB/km, and the following parameters of the fiber were used:

navg=1.45, γe=0.902, λ=1550nm, ρ0=2.21g/cm3, v=5616m/s, ΓB=0.1GHz.

5.3.1 Spectral Shift

The appearance of a fast and slow axis results in two optical modes in the fiber with different

SBS frequency shifts, causing a mismatch in the corresponding momentum vectors of the

acoustic waves, thereby making it impossible for both principal axes to be resonant with the

acoustic phonons in the conventional sense. The mismatch in phonon resonance causes a

Brillouin shift, ΔυB, and the larger the birefringence, the larger the Brillouin shift.

Figure 5.2 below shows the magnitude of the Brillouin shift in the output PW and SW

spectra.
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(a) (b)
Figure 5.2 (a) Output pump spectrum, (b) output Stokes spectrum.

Birefringence Δn: *10-4; 10-5; 10-6; LHP(1,0,0); L=1000m.

P1x0 = 0.5 mW, P1y0 = 0.5 mW, P2x0 = 0.5 mW, P2y0 = 0.5 mW.

The Brillouin shift, ΔυB, was measured as a function of beat length, which is defined in

expressions (5.25)-(5.26) below [4].

   yyxx
B kkkk

L
2121

2





(5.25)

where i
ij

ij c
n

k  , i=1,2 and j=x,y. (5.26)
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Figure 5.3 Brillouin shift dependence on beat length, L=1000m, LHP (1,0,0).

(a) P1x0 = 0.9 mW, P1y0 = 0.1 mW, P2x0 = 0.9 mW, P2y0 = 0.1 mW.

(b) P1x0 = 0.5 mW, P1y0 = 0.5 mW, P2x0 = 0.5 mW, P2y0 = 0.5 mW.

Figure 5.3 summarizes the simulated values of the ΔυB, in comparison to the beat length (and

birefringence Δn), for linearly polarized light (LP). Two cases were compared for pump and

Stokes input powers of 1 mW: (a) the input powers of the x- and y- components of the pump

and Stokes waves were taken to be unequal, and (b) the input powers of the x- and y-

components of the pump and Stokes waves were taken to be equal. From Figure 5.3, it is

apparent that the degree of birefringence has a nonlinear effect on the Brillouin shift ΔυB, in

particular, the larger the birefringence, the larger the shift. This spectral shift can in turn be

used to quantify the birefringence of the optical fiber upon measurement of the output signal.

In addition, the spectral shift appears to be more prominent for unequally balanced input

powers of the x- and y- components of the pump and Stokes waves, as compared to the case

of equally balanced powers.
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5.3.2 Spectral Distortion

A. Linear Polarization (LP)

The following simulations were performed for linearly polarized (LP) light. Figure 5.4 below

shows the output spectra of the pump and Stokes waves – both of which were linearly

horizontally polarized (LHP) in one simulation, and linearly vertically polarized (LVP) in

another, the resulting spectra being identical for both LHP and LVP light.

(a) (b)

(c) (d)
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(e) (f)

Figure 5.4 Left: output pump spectrum; Right: output Stokes spectrum.

(a)-(b) steady-state; (c)-(d) 240ns pulse; (e)-(f) 79ns pulse; Birefringence Δn=10-4; L=1 km.

: P1x0 = 10.0 mW, P1y0 = 1.0 mW, P2x0 = 10.0 mW, P2y0 = 1.0 mW; LHP (1,0,0);

: P1x0 = 10.9 mW, P1y0 = 0.1 mW, P2x0 = 10.9 mW, P2y0 = 0.1 mW; LHP (1,0,0);

: P1x0 = 10.0 mW, P1y0 = 1.0 mW, P2x0 = 10.0 mW, P2y0 = 1.0 mW; no pol (0,0,0).

It is often experimentally not possible to achieve a 100% separation of power between the

slow and fast modes of the signal. There is power leakage between the x- and y-axes [84],

especially when additional optical components, such a polarization controllers or scramblers

[85, 86], are used. Hence, for a 11 mW signal, it is a realistic assumption that as much as 1

mW of power could be present in the vertical mode of the signals for LHP light. Likewise,

for LVP lights, it is also experimentally plausible to have as much as 1 mW of power in the

horizontal mode.

The shape of the output spectra in Figures 5.4 can be explained by the modified interaction

between the pump and Stokes waves during LP. Referring to the system of equations (5.20)-

(5.23) and β-coefficients (5.10)-(5.17), we see that the β-coefficients β1b, β1d, β3b and β3d are

reduced to zero for both LHP and LVP light. As a result, the system of equations (5.20)-(5.23)

is broken up into two smaller systems consisting of equations: a) (5.20) and (5.21), and b)
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(5.22) and (5.23) respectively, which are independent of each other. The first system

describes the interaction between the horizontal components (x-components) of the pump

and Stokes waves, and the second system describes the interaction between the vertical

components (y-components) of the pump and Stokes waves. In other words, interactions

along the x- and y-components become independent from each other, which is to be expected

during linear polarization.

In Figure 5.4, which represents the output pump and Stokes spectra of LHP light, the little

'blip' at the bottom/top of the spectra is the y-component contribution, while the 'general'

shape of the spectra is a result of the x-component contribution. Since the power in the

horizontal mode is large for LHP light, the resultant depletion of the PW and amplification of

the SW are also large, leading to the general trend of the output spectra in Figure 5.4. This is

the spectral shape which would be expected for an idealized LHP light (or perhaps light with

no consideration for polarization at all). However, the LHP is not ideal, and there exists a

small interaction in the vertical component. Since the power along the y-axis is small, the

resultant contribution is also small. As can be seen from Figure 5.4, the smaller the power in

the y-component, the smaller the contribution, and the weaker the spectral distortion of the

graph. In other words, increasing powers in the y-components have been chosen to

demonstrate the increasing degree of spectral distortion. For P1y=P2y=1mW, the spectral

'blip' is much larger than for the case where P1y=P2y=0.1mW. However, while a small power

leakage causes a smaller spectral distortion or 'blip', it yields an output spectra with a larger

depletion, or 'flat-top', than in the case of larger power leakage. For the steady-state regime,

shown in Figures 5.4(a)-(b), where both the pump and Stokes waves are continuous waves,

the 'flat-top' effect is more prominent and the spectral 'blip' is less pronounced, as compared

to shorter pulse lengths of 240ns and 79ns, shown in Figures 5.4(c)-(d) and 5.4(e)-(f)

respectively. With decreasing temporal pulse width, the power leakage causes the distorted

spectral tip to be sharper and more pronounced, as compared to longer pulses.

For sensing applications, it is detrimental to have a depleted spectrum [70, 71, 72], since

depletion and spectral flattening makes it difficult to accurately measure the center frequency

of the spectrum. Although the distorted spectra with smaller depletion, obtained from the
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steady-state interaction of the PW and SW, may not have a sufficiently prominent spectral tip

for sensing applications, it is an improvement none-the-less, as compared to the case of

larger depletion, where the 'flat-top' spans an even larger frequency range.

As shown in Figure 5.4(e)-(f), a shorter pulse length of 79ns undergoing spectral leakage

between the fast and slow modes has a sufficiently prominent spectral tip for measurement in

sensing applications. As such, by using the distortion effects caused by birefringence to our

advantage, it is possible to provide a regime that is favourable for sensing applications

related to SBS, by increasing the power leakage between the fast and slow modes, as well as

decreasing the pulse length during LP.

In the case of LVP, also shown in Figure 5.4, the roles of the x- and y-components are

reversed, but the interaction is identical. For this reason, the two cases of LHP and LVP light,

shown in Figures 5.4, give identical results, since in either case, the interaction along the

slow or fast axes remains the same.

Also shown in the Figure 5.4, the output spectra of LP light is shown in comparison to light

without a dependence on polarization – namely light having a Stokes vector S=(0,0,0), which

has been taken to be a first-order approximation to truly unpolarized light. The spectra of the

LP is spread out in the frequency domain, as compared to non-polarized light. This effect can

be explained by the nature of the LP interaction between the pump and Stokes waves. As

discussed above, when LP is not ideal, there exists a small independent interaction along

either the fast or slow mode, contributing to the spectral distortion. The interaction along the

main axis of polarization, however, contributes the most to the output spectral shape of the

light – the SOP of the counter-propagating waves being lined up for maximum gain [22, 24,

25, 27, 29, 30]. Additionally, since this interaction is strong, and the input powers along the

main mode are comparatively large, the output light experiences a significant gain/depletion,

causing the spectrum itself to be larger and inherently spread out [72]. This effect does not

present itself for unpolarized light, where there cannot be polarization alignment for

maximum gain. All four lights interact with each other and as a result, the output spectrum is

smaller, which contributes to less spectral spreading in the frequency domain.
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As a result, the model presented for LP light proves to be a valuable measure of the

experimentally realistic case of non-ideally linearly polarized light in optical fibers, or as a

measure of power leakage between the fast and slow modes. The degree of spectral distortion

may be used as an indication of the quality of LP during the SBS interaction.

B. Elliptical Polarization for steady-state interaction

In this section, the pump and Stokes waves were simulated to have several elliptical

polarizations: Random1 (0.1, 0.9, 0.42), Random2 (0.3, 0.7, 0.65), Random3 (0.58, 0.58,

0.58), and Random4 (0.1, 0.9, 0.42). The effect of the elliptical polarization on the spectral

shape of the output light was observed for pump and Stokes input powers: a) below the

Brillouin threshold, and b) above the Brillouin threshold [1, 61].

In the Figure 5.5 below, the individual x- and y- components of the Stokes wave have been

plotted. Moderate powers have been chosen for various degrees of birefringence: 10-4, 10-5,

and 10-6. It can be seen that the spectral distortion which results due to the birefringence is

more prominent for higher degrees of birefringence (10-4) as compared to lower degrees of

birefringence (10-6).
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(a) (b)
Figure 5.5 (a) x-comp. of output Stokes spectrum; (b) y-comp. of output Stokes spectrum.

Birefringence Δn = * 10-4 ; 10-5; 10-6; Random4 (0.1,0.9,0.42), L=1000m.

P1x0 = 10.0 mW, P1y0 = 1.0 mW, P2x0 = 10.0 mW, P2y0 = 1.0 mW.

In the most general case of elliptical birefringence, there are four running acoustic waves,

each having their own resonance frequency. As a result, each of the fast and slow modes

have their own resonant frequency, which is the cause of the multiple peaks on the output

spectra in Figure 5.5.

In Figures 5.6-5.7 below, input powers have been taken beyond the Brillouin threshold for

various elliptical polarizations. It can be seen that certain polarizations cause a kind of

spectral spreading effect [87, 88], to the extent that the two spectra become partially disjoint,

while others affect the spectral shape negligibly.
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(a) (b)
Figure 5.6 (a) Output pump spectrum, (b) Output Stokes spectrum.

Birefringence Δn: □ 10-6 Random1 (0.6, 0.25, 0.76); 10-6 Random2 (0.3, 0.7, 0.65); L=1000m

○ 10-6 Random3 (0.58, 0.58, 0.58); * 10-6 Random4 (0.1, 0.9,0.42); 10-10 no pol (0,0,0);

P1x0 = 1.0 mW, P1y0 = 1.0 mW, P2x0 = 1.0 mW, P2y0 = 80.0 mW.

In Figure 5.6, for example, the spectral spreading effect can be explained as a result of a very

strong interaction along one mode of the optical fiber, and weak interactions along the other

modes for the polarization Random4 (0.1, 0.9, 0.42). In Figure 5.6, since the input power of

the Stokes y-component is so large (80mW), and the corresponding linear polarization

component is also large, it acts to quickly deplete power from the other modes, and since, as

mentioned before, there is no single resonant frequency, it does so along multiple resonant

frequencies. For polarizations Random1 (0.6, 0.25, 0.76), Random2 (0.3, 0.7, 0.65) and

Random3 (0.3, 0.7, 0.65), the combination of relatively weak vertical polarization component

and strong circular polarization component almost eliminate the effect altogether.

Polarizations Random1 and Random2 are nearly identical to the non-polarized light, hence

these polarizations can be used to maintain the fidelity of the spectral shape to be as close as

possible to non-polarized light which is unaffected by birefringence. Additionally, the effects

of distortion on the full width at half maximum (FWHM) of the output pulse can be

minimized, which has numerous applications in communications and data transmission.
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(a) (b)
Figure 5.7 (a) Output pump spectrum, (b) output Stokes spectrum.

Birefringence Δn: □ 10-6 Random1 (0.6, 0.25, 0.76); 10-6 Random2 (0.3, 0.7, 0.65); L=1000m

○ 10-6 Random3 (0.58, 0.58, 0.58); * 10-6 Random4 (0.1, 0.9,0.42); 10-10 no pol (0,0,0);

P1x0 = 10.0 mW, P1y0 = 1.0 mW, P2x0 = 60.0 mW, P2y0 = 1.0 mW.

A similar effect can be observed in Figure 5.7 above, though because of the different power

distribution among the modes there is no longer a spectral spreading effect. In addition,

polarizations Random1, Random2 and Random3 are no longer nearly identical to the

unpolarized light, due to the different interaction between the four lights caused by varied

initial power distributions.

As a result, it is shown that elliptical birefringence has a prominent effect on the spectral

shape of the output pump and Stokes waves. In some cases, it causes a spectral spreading

effect as well as spectral spreading, while in other cases it is possible to choose a polarization

and power combination to minimize the spectral distortion of the FWHM of the output pulse,

and maintain pulse fidelity.
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5.4 Summary

In summary, it has been observed that the degree of birefringence, or beat length, is

responsible for an observed Brillouin shift, ΔυB, in the output PW and SW spectra, which

may be used to quantify the birefringence of the fiber. Polarization and elliptical

birefringence has a prominent effect on the spectral shape of output light – in particular, non-

ideal LP light causes spectral distortion, which appears in the shape of a 'blip' on top of the

expected spectral shape, as well as spreading of the spectrum in the frequency domain. As

such, a good measure for detecting non-ideally linearly polarized light has been established.

Additionally, the spectral depletion of the non-ideally linearly polarized light has uncovered

a regime which is preferable for measurement in sensing applications. Elliptical polarization,

for moderate input powers of the PW and SW, also causes the spectrum to spread out in the

frequency domain. For high input powers, a spectral spreading effect is observed for certain

elliptical polarizations. Other elliptical polarizations provide means for maintaining the

FWHM and pulse fidelity of the Brillouin spectral shape – even for powers beyond the

Brillouin threshold.
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Chapter 6

Polarization Effects in combined Brillouin gain and loss

6.1 Introduction

In this chapter, a more accurate model of the polarization-dependent Brillouin gain and loss

interaction, which includes the case of elliptical birefringence, is provided. The model

presented in this manuscript describes the most comprehensive equations considering the

birefringence effects in an optical fiber, being an extension of the work presented in Chapter

5. As in Chapter 5, the model includes the most general case of elliptical birefringence, the

effects of polarization mode dispersion (PMD), polarization dependent loss (PDL), phonon

resonance structures, pulse length, as well as the overall attenuation of the fiber.

For sensing applications involving optical differential parametric amplification in Brillouin

optical time domain analysis (ODPA-BOTDA) systems [65, 89], which employ both Stokes

wave (SW) and anti-Stokes wave (ASW) pulses, this investigation of the effects of

birefringence on the combined Brillouin gain and loss is paramount. Additionally, since

spectral distortion is detrimental in sensing applications, it is important to investigate a power

regime in which birefringence effects are minimal.

6.2 Model

The process of Brillouin gain and loss has been studied in a birefringent optical fiber, with a

core radius of 4.1μm. The configuration is comprised of a pump wave (PW) launched into

one end, and a Stokes wave (SW) and an anti-Stokes wave (ASW) launched from the other

end. The PW, SW and ASW have x- and y- eigen-polarization components. The schematic

arrangement is shown in Figure 6.1 below.
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Figure 6.1 Schematic arrangement of SBS in an optical fiber of length L.

E1x – Pump wave, E1y – Pump wave, E2x – Stokes wave, E2y – Stokes wave, E3x – anti-Stokes wave,

E3y – anti-Stokes wave

The extended system of equations (1.1)-(1.6) describes the interaction of the pump, SW and

ASW, as shown in Figure 6.1, including the effects of PMD and PDL, similar to the system

presented in section 5.2. Again, besides the usual slowly varying amplitude approximation,

the only additional approximation employed was the assumption that the phonon fields are

established almost simultaneously [1, 30].
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For the Stokes wave, we have  2211  xx
SW
Bxx nn

c
v

 ,  2211  yy
SW
Byy nn

c
v

 ,

 2211  yx
SW
Bxy nn

c
v

 ,  2211  xy
SW
Byx nn

c
v

 , and for the anti-Stokes wave we have

 3311  xx
ASW
Bxx nn

c
v

 ,  3311  yy
ASW
Byy nn

c
v

 ,  3311  yx
ASW
Bxy nn

c
v

 ,

 3311  xy
ASW
Byx nn

c
v

 , which are the Brillouin frequencies associated with the principal

axis beatings [4], where ω1 is the angular frequency of the PW, and ω2 and ω3 are the angular

frequencies of the SW and ASW respectively. n1x and n1y, n2x and n2y, and n3x and n3y, are the

indices of refraction associated with the principal axes of the PW, SW and ASW respectively.

211   is the angular frequency of the AW1 caused by the interaction of the PW and

SW, and 132   is the angular frequency of the AW2 caused by the interaction of the

PW and ASW. E1x and E1y, E2x and E2y, and E3x and E3y, are the complex amplitudes of the

PW, SW and the ASW, respectively. c is the speed of light, ρ0 is the mean density of the fiber,

γe is the electrostrictive constant, z is the coordinate along the fiber, v is the speed of sound in

the fiber, ΓB is the Brillouin linewidth, and finally, α1x, α1y, α2x, α2y, α3x, and α3y represent the
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fiber attenuations of the principal axes of polarization of the three interacting waves.

The S1x, S1y, S2x, S2y, S3x, and S3y represent the Stokes vectors in the Poincaré sphere

polarization representation [66, 67], and are used to define the polarization of the

propagating lights [61, 66, 67]. As defined in section 5.2, relations of importance include: Sx1

= -Sy1, Sx2 = -Sy2 and Sx3 = -Sy3. In the above system of equations (6.1)-(6.6), Sx1 describes the

principal state of polarization vector for the forward propagating light, and Sx2 and Sx3

describe the principal states of the polarization vector of the backward propagating lights. In

this case, if Sx1 is defined as Sx1 = (a, b, c), then Sy1 = (-a, -b, -c), Sx2 = (a, b, -c), Sy2 = (-a, -b,

c), Sx3 = (a, b, -c) and Sy3 = (-a, -b, c), where a, b and c are the Stokes vector components

normalized such that a2 + b2 + c2 = 1. For fibers having elliptical birefringence (0 < |c| < 1),

the most general beating situation will be excited.

Lastly, the remaining simplifications were introduced to the system of equations (6.1)-(6.6)

to make the birefringence effect more explicit,
2

iyix
i

nn
n


 , iyixi nnn  ,

2
iyix

i





 ,

iyixi   , i=1,2,3.

In the above arrangement, the PW input parameters are known only at the beginning of the

fiber, i.e. at z=0. Correspondingly, the SW and ASW input parameters are known only at the

end of the fiber, i.e. at z=L, where L is the length of the fiber. Therefore, the boundary

conditions for the system of equations (1.1)-(1.6) are similar to previously-studied

configurations with one pulse [4, 9] from section 5.2. The conditions for two pulses are as

follows

|E1x(0)|2=E21x0; |E1y(0)|2=E21y0 (6.7)

|E2x(L)|2=E22x0; |E2y(L)|2=E22y0 (6.8)

|E3x(L)|2=E23x0; |E3y(L)|2=E23y0 (6.9)

where E21x0 , E21y0 , E22x0 , E22Y0 , E23x0 , and E23y0 are the known squared absolute values of

the complex fields E1x , E1y , E2x , E2y , E3x , and E3y respectively. The same method was used

to simplify the system of equations (6.1)-(6.6) as in section 5.2, namely we have employed
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the dimensionless length variable Lz / , and the dimensionless time variable ctt / ,

where
c
nL

t avg
c


 is the transit time, navg is the average index of refraction, and r is the

radius of the fiber core. The dimensionless intensity variables are defined as the ratio of

powers Yij=Pij/Pij0, i=1,2,3, j=x,y. Additionally, ε1x, ε1y, ε2x, ε2y, ε3x, and ε3y are the

dimensionless loss terms, defined as ijij L 2 , i=1,2,3, j=x,y. The form factor component

of the β-coefficients is defined as

2

1

B

BijSW
ij 


 or

2

2

B

BijASW
ij 


 , where i=x,y, j=x,y.

Similarly, the Method of Characteristics [61, 75, 76] was employed as in section 5.2, and the

following change of variables was used  
n

u 1
and  

n
v 1

, where the

approximation nnn  21 was employed. The resulting system of equations is as follows,

with β-coefficients as defined in expressions (6.16)-(6.31).
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Once again, the change of variables u and v transforms the system of equations (6.1)-(6.6) of

counter-propagating waves into the system of equations (6.10)-(6.15) of co-propagating

waves. Consequently, we are able to set the initial conditions as

          1tanhtanh0, 22110  btabtatYij , each of which takes place at the same end

of the new coordinate system, where i=1,2,3 and j=x,y. The parameters a1 and a2 determine

the rise time of the PW, SW and ASW pulse profiles, while the parameters b1 and b2 define

the center of the pulses via the expression |b2-b1|/2.

In this chapter, the sixth order Runge-Kutta method (RK6) was used to numerically solve the

system of equations (5.1)-(5.6), and was chosen for its stability, increased accuracy and

relatively large step size [90, 91].
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6.3 Results and Discussion

Output spectra were calculated by detuning the Stokes and anti-Stokes frequencies, ω2 and

ω3, synchronously, as done in the typical experimental setup [4, 28, 92]. Output powers were

calculated as Pij-out=Pij0 ∙Yij-out , i=1,2,3 and j=x,y, and the total power of the pump, Stokes

and anti-Stokes waves was calculated to be Pi=Pix+Piy, i=1,2,3. Also, the attenuation in the

fiber has been approximated as αij=α=0.2 dB/km, i=1,2,3 and j=x,y, and the following

parameters of the fiber were used: navg=1.45, γe=0.902, λ=1550nm, ρ0=2.21g/cm3, v=5616m/s,

ΓB=0.1GHz.

For sensing applications such as the ODPA-BOTDA systems [65, 89], the pump and pulse

powers are chosen to be relatively low, with Ppump > Ppulse. In addition, the ODPA system

functions ideally when the SW and ASW are balanced, causing the gain and loss to eliminate

each other, creating a ‘similar’ effect to the substraction process in the differential

pulse-width pair Brillouin optical time-domain analysis (DPP-BOTDA) in the electric

domain. Consequently, for the simulations performed in this chapter, the pump wave was

given a power of P1x=P1y=1mW, while the Stokes and anti-Stokes waves were given

increasing powers from P2x=P2y=P3x=P3y=0.1mW to 0.9mW in nine different simulations.

Elliptical birefringences of Δn = 10-4, 10-5 and 10-6 were investigated, and compared to the

case of negligible birefringence, Δn = 10-10 with Stokes vector S=(0, 0, 0), which has been

taken to be a first-order approximation to truly unpolarized light. A random elliptical

polarization has been assigned to the pulses, having a Stokes vector S=(0.1, 0.9, 0.424),

which corresponds to polarization Random4 from Chapter 5. A pulse length of 7.5ns has been

chosen for the SW and ASW, respectively.

6.3.1. Gain dominant regime

In this section, pulse powers have been chosen to be between 0.1 mW and 0.6mW. As can be

seen from Figure 6.2 below, the output pump spectra look substantially Lorentzian, since the

powers chosen allowed the combined Brillouin gain and loss to operate in the gain dominant
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regime. By increasing in pulse powers from 0.1mW to 0.6 mW, the Brillouin spectrum

becomes increasingly distorted. This is caused by an imbalance between the gain and loss

processes ̶ since the regime is gain dominant, the loss experienced by the pump wave

contributes in creating an asymmetry in the output pump spectra.

(a) (b) (c)

(d) (e) (f)
Figure 6.2 Output pump spectra. S=(0.1, 0.9, 0.42). L=45m. P1x=P1y=1mW.

(a) P2x=P2y=P3x=P3y=0.1mW; (b) P2x=P2y=P3x=P3y=0.2mW; (c) P2x=P2y=P3x=P3y=0.3mW;

(d) P2x=P2y=P3x=P3y=0.4mW; (e) P2x=P2y=P3x=P3y=0.5mW; (f) P2x=P2y=P3x=P3y=0.6mW.

:Δn =10-4; :Δn =10-5; : Δn =10-6; : Δn =10-10 S=(0, 0, 0).

Similar physical principles govern the SBS interaction as described in section 5.3, namely

that in addition to the contributing gain and loss processes, birefringence of the optical fiber

causes the appearance of a fast and slow axis, which results in two optical modes in the fiber
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with different SBS frequency shifts. This causes a mismatch in the corresponding momentum

vectors of the acoustic waves, thereby making it impossible for both principal axes to be

resonant with the acoustic phonons. The mismatch in phonon resonance causes a Brillouin

shift, ΔυB.

For each power distribution, the spectral shift was calculated for each degree of birefringence,

shown in Figure 6.3(A) below.

(A) (B)
Figure 6.3. (A) ΔυB dependence on Δn; (B) Ratio dependence on Δn. L=45m, S=(0.1, 0.9, 0.42).

(a) P2x=P2y=P3x=P3y=0.1mW; (b) P2x=P2y=P3x=P3y=0.2mW; (c) P2x=P2y=P3x=P3y=0.3mW;

(d) P2x=P2y=P3x=P3y=0.4mW; (e) P2x=P2y=P3x=P3y=0.5mW; (f) P2x=P2y=P3x=P3y=0.6mW.

It is apparent from Figure 6.3(A) that the degree of birefringence has a nonlinear effect on

the Brillouin shift ΔυB, in particular, the larger the birefringence, the larger the shift,

regardless of the power distribution. Not surprisingly, this nonlinear effect is similar to the

case of the two-wave interaction of the PW and SW from Chapter 5. This spectral shift can in

turn be used to quantify the birefringence of the optical fiber upon measurement of the output

signal. Understandably, the largest shifts occur for the smallest power disparity between the

pump and pulses, while the smallest shift occurs for the largest power disparity, since the

case of smaller power disparity, shown in Figure 6.2(f), yields a greater spectral distortion

due to a stronger competing gain and loss process, while the spectral distortion of Figure

6.2(a) is nearly noticeable.

To assess the effect of birefringence on the asymmetry of the output spectra, the spectral

width at half maximum on the left, ΔυL, and the spectral width at half maximum on the right,
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ΔυR, was measured, and their Ratio=ΔυL/ΔυR was calculated. Exemplary ΔυL and ΔυR are

shown in Figure 6.2(f) for clarity ̶ a perfectly symmetric spectrum would have a Ratio=1.

Figure 6.3(B) below shows the Ratios for the different power distributions, as well as for

different Δn, from which it is confirmed that an increase in pulse power increases the spectral

distortion (asymmetry) of the output plots. Although the general asymmetrical shape is a

result of the competing gain and loss processes, an increase in birefringence contributes to

the asymmetry, increasing the disparity between ΔυL and ΔυR, as seen by the increase in the

Ratio, as compared to the case of negligible birefringence.

In the most general case of elliptical birefringence used in both Chapter 5 and the current

chapter, there are four running acoustic waves, each having their own resonance frequency.

As a result, each of the fast and slow modes have their own resonant frequency at which

energy transfer occurs. The result is an asymmetric spectral shape due to the uneven energy

transfer along different resonant frequencies. The effects of polarization mode dispersion

(PMD) contribute to the spectral distortion seen in Figure 6.3(B), since the existence of a fast

and slow axis causes the two optical modes to travel at different speeds, and arrive at the end

of the fiber at differing times. In Chapter 5, this has been shown to causes a spectral

spreading, and in combination with the multiple resonance frequencies, could account for the

increase in distortion.
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6.3.2 Competing Gain and Loss regime

In the previous section, although the gain and loss processes were competing, due to the

power distributions chosen, the regime was mainly gain dominant. For higher pulse powers,

the loss process becomes stronger, making the effects of the gain and loss regime comparable.

In this section, pulse powers were increased from 0.7mW to 0.9mW.

(a) (b) (c)

Figure 6.4 Output pump spectra. S=(0.1, 0.9, 0.42). L=45m. P1x=P1y=1mW.

(a) P2x=P2y=P3x=P3y=0.7mW; (b) P2x=P2y=P3x=P3y=0.8mW; (c) P2x=P2y=P3x=P3y=0.9mW;

:Δn =10-4; :Δn =10-5; : Δn =10-6; : Δn =10-10 S=(0, 0, 0).

As can be seen from Figure 6.4, the comparable gain and loss processes substantially alter

the output pump spectrum from its previous Lorentzian shape [28, 30] ̶ in Figure 6.4(a) the

spectral deformity results in dual peaks, or a spectral spreading effect, while in Figures

6.4(b)-(c) there is a simultaneous gain and loss spectra. A spectral shift is still apparent ̶ in

Figure 6.4(a), the positions of the two peaks have been measured, while in Figures 6.4(b)-(c)

the positions of the peaks and troughs have been measured. The results are shown in Figure

6.5(A) below, where the same general trend is observed as in Figure 6.3(A).
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(A)

(B) (C)

Figure 6.5 (A) ΔυB dependence on Δn; (B)-(C) Ratio dependence on Δn. L=45m, S=(0.1, 0.9, 0.42).

(a) P2x=P2y=P3x=P3y=0.7mW; (b) P2x=P2y=P3x=P3y=0.8mW; (c) P2x=P2y=P3x=P3y=0.9mW.

Similarly to section 6.3.1, to assess the effect of birefringence on the asymmetry of the

output spectra, the disparity between peak heights for various degrees of birefringence was

measured. Namely for Figure 6.4(a), the height of the peak on the left, HL, the height of the

peak on the right, HR, was measured, and their Ratio=HL/HR was calculated. For Figures

6.4(b)-(c), the dip of the peak on the left, HL, the height of the peak on the right, HR, was

measured, and their Ratio=HL/HR was calculated. The HL and HR for each case is shown on

Figure 6.4. Figure 6.5(B) below shows the Ratios for the different Δn, for the case of spectral

burning depicted in Figure 6.4(a), while Figure 6.5(C) shows the Ratios for the different

power distributions and different Δn for the case of simultaneous gain and loss depicted in

Figure 6.4(b)-(c). Similarly to section 6.3.1, a perfectly symmetric spectrum would have a

Ratio=1.
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The spectral spreading effect of Figure 6.4(a) can be explained as a result of a sufficiently

strong loss process, which causes a portion of the pump spectra to become substantially

depleted, but not sufficiently strong enough to create a lossy spectrum. From Figure 6.5(A),

it can be seen that the disparity between the height of the peaks increases with increasing

birefringence, represented by the decreasing Ratio ̶ birefringence contributes once again to

spectral asymmetry.

However, looking at Figure 6.5(C), it is apparent that with increasing birefringence, the

disparity between the gain and loss peaks decreases, represented by the Ratio becoming

closer to 1, hence the asymmetry decreases. This can be explained by the same multiple

resonant frequency argument as in section 6.3.1. The same energy transfer that contributed to

the increase in spectral asymmetry in section 6.3.1, now contributes to creating a more

symmetrical simultaneous gain and loss spectrum in Figures 6.4(b)-(c).

As can be seen from Figures 6.2 and 6.4 above, the effects of PMD and PDL caused by

birefringence result in a spectral distortion effect, similar to the one reported in [28] for

BOTDA systems. Since elliptical polarizations of the interacting pulses include vertical,

horizontal, and circular components in their Stokes vectors, it is therefore expected that the

resulting gain would be different than in the case of parallel linear alignment, where both

waves have the Stokes vector (1, 0, 0) and experience maximum gain along one resonant

frequency [22, 24, 25]. In the case of elliptical polarization, where there exists an interaction

along all components of the Poincaré sphere, an increase in distortion effects is expected, as

compared to the case of perfectly parallel polarized light, often attributed to models of

Brillouin gain and loss which do not account for polarization [4, 65, 89]. In the gain

dominant regime, this distortion contributes to the asymmetry of the output pump spectrum,

while conversely in the competing gain and loss regime, the distortion contributes to making

the output spectra more symmetrical.

The spectral distortion effect is highly detrimental for the ODPA-BOTDA sensor system

employing Lorentzian spectra [65, 89], where an inaccurate spectral reading could cause

inaccuracies in the operation of the sensor. Based on the results of this chapter, it is therefore
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beneficial to choose powers in the gain dominant regime. Not only is the output pump

spectrum substantially Lorentzian in this regime, but the higher the disparity in power

between the pump and pulses, the more minimal the effect of birefringence is on the spectral

distortion of the output pulse.

6.4 Summary

The most general model of elliptical birefringence in an optical fiber has been extended to

describe a transient Brillouin interaction including both gain and loss. Spectral distortion

effects related to birefringence have been investigated in the gain dominant and competing

gain and loss regimes. It has been shown that the spectral distortion caused by birefringence

can be minimized by choosing pump and pulse powers with a large disparity.
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Chapter 7

Applications of SBS: Photonic Logic

7.1 Introduction

In this chapter, a novel fiber nonlinearity-based technique is proposed to realize all-optical

NAND/NOT/AND/OR logic gates, based on the principles of a combined Brillouin gain and

loss process in a polarization maintaining fiber (PMF). Combined Brillouin gain and loss is

often advantageous over Brillouin gain in the construction of all-optical gates since it

describes the energy transfer between three optical waves, as compared to only two optical

waves. Additionally, the combination of simultaneous gain and loss acts to improve the

signal-to-noise ratio (SNR) by approximately twofold [92] upon measurement of the

Brillouin gain spectrum (BGS). This increases the clarity of the signal, as well as the

switching contrast in the proposed logic gates. Furthermore, the combined gain and loss

scheme is more compact than the traditional Brillouin optical correlation-domain analysis

(BOCDA) system [93, 94], which employs successive utilization of the Brillouin gain and

loss. The additional parameters in the three-wave interaction give combinations of input

powers such that the output signals yield results which correspond to the truth tables of, for

example, a NAND gate. The combined Brillouin gain and loss model was used to create

several configurations of a functional NAND gate, and a NOT gate. With Brillouin gain one

can construct a simplified NOT gate. The combination of the NAND and NOT gates has

been used to further construct several configurations of AND and OR gates. Switching

contrasts are simulated to be between 20-83% for various configurations.

7.2 Model

The process of combined Brillouin gain and loss has been studied in a single mode optical

fiber, with core radius of 4.1μm and power penalty of 0.67 dB/km. The configuration is
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comprised of a pump wave, which has been taken to be a continuous wave (CW) launched

into one end, and a Stokes wave (SW), and an anti-Stokes wave (ASW) launched into the

other end. The schematic arrangement is shown on Figure 2.8 in Chapter 2. Since the pump

wave is a continuous wave in this case, it will be referred to as ‘CW.’

The system is deemed to operate in the steady-state regime with pulse lengths greater than

the phonon relaxation time, in this case 10ns [1, 4]. In the slowly varying amplitude

approximation, the steady state interaction between the CW, SW, ASW and two acoustic

waves (AW1 and AW2) is described by the system of equations (2.33)-(2.37) from Chapter 2,

shown again below [1, 9, 65].
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Where Ω1=ω1 – ω2, Ω2=ω3 – ω1, Ω1 is the angular frequency of the AW1 caused by the

interaction of CW and SW, Ω2 is the angular frequency of the AW2 caused by interaction of

CW and ASW, q1 and q2 are the acoustic wavevectors defined as q1≈2k1 and q2≈2k1, where

k1 is the wavevector of the CW, defined as |k1|=nω1/c. A1 is the complex amplitude of the

CW, A2 is the complex amplitude of the SW, A3 is the complex amplitude of the ASW, ρ1 is

the complex amplitude of the AW1 caused by interaction of CW and SW, ρ2 is the complex

amplitude of the AW2 caused by interaction of CW and ASW, c is the speed of light, ρ0 is the

density of the fiber, γe is the electrostrictive constant, z is the coordinate along the fiber, n is

the index of refraction of the fiber, v is the speed of sound in the fiber, ΓB is the Brillouin

linewidth, ΩB is the Brillouin frequency defined as ΩB = 2nvω1/c, where ω1 is the angular
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frequency of the CW, ω2 is the angular frequency of the SW, and ω3 is the angular frequency

of the ASW.

For a two-wave configuration describing Brillouin gain, the ASW terms are simply set to ‘0’

in the following analysis. In the above arrangement, the SW and ASW input parameters are

known only at the beginning of the fiber, i.e. at z=0. Correspondingly, the CW input

parameters are known only at the end of the fiber, i.e. at z=L, where L is the length of the

fiber. Therefore, the boundary conditions for the system of equations (7.1)-(7.5) are similar

to previously-studied configurations with one pulse [4, 65]. The conditions for two pulses are

as follows

|A1(L)|2 = A210; |A2(0)|2 =A220; |A3(0)|2 =A230 (7.6)

where A210 , A220 and A230 are known squared absolute values of the complex amplitudes A1 ,

A2 , and A3 respectively. In the dimensionless notation, the system of equations (7.1)-(7.5)

becomes
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2154 YYY  (7.10)

3165 YYY  (7.11)

With corresponding boundary conditions: Y1(1)=1; Y2(0)=1; Y3(0)=1 (7.12)

The dimensionless variables Lzl / , Y1=P1/P10, Y2=P2/P20, Y3=P3/P30, Y4=|ρ1/ρ0|2,

Y5=|ρ2/ρ0|2, L  have been introduced to derive the system of equations (7.7)-(7.11), as

well as the following β-coefficients.
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L is the fiber length, P1 is the CW power, P10 is the initial CW power, P2 is the SW power,

P20 is the initial SW power, P3 is the ASW power, P30 is the initial ASW power, and r is the

radius of fiber, and ω=ω1≈ω2≈ω3 and q=q1≈q2.

The system of equations (7.7)-(7.11) was solved numerically, making use of boundary

conditions (7.12), to feature the power distribution of the ASW inside the optical fiber, for

given input CW and SW powers. A typical power distribution of the ASW is shown on

Figure 7.1 for the case of (a) combined Brillouin gain and loss, for which all three initial

powers are 10mW, and (b) Brillouin loss, where the Stokes input power has been set to ‘0’.

The goal of studying these distributions is to show that the model described in the system of

equations (7.7)-(7.11) does, indeed, describe the combined Brillouin gain and loss process,

depicted by the solid line, which shows significant depletion reduction as compared with the

Brillouin loss processes, depicted by the dashed line. The parameters used for the simulations

in this paper are shown in Table 7.1 below.

Table 7.1 Simulation Parameters

Index of reflection n 1.48
Electrostrictive constant γe 0.902
Wavelength of pump laser λ 1550 nm

Density of fiber ρ0 2.21 g/cm3

Speed of sound v 5616 m/s
Brillouin Linewidth ΓB 0.1 GHz

Fiber attenuation α 0.2 dB/km
Power penalty 0.67 dB/km
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Figure 7.1 ASW power distribution inside the optical fiber.

(a) Gain and Loss regime: P20=10mW; (b) Loss regime: P20=0mW

n=1.48, γe=0.902, λ=1550nm, ρ0=2.21 g/cm3, v=5616 m/s, ΓB=0.1 GHz, α=0.2 dB/km, L=350m,

P10=10mW, P30=10mW.

7.3 Results and Discussion

It has been determined that obtaining a logical output of exactly 0.1mW or 10mW is not

feasible. However, it is possible to obtain output signals within a given level of tolerance. In

this manuscript, a threshold value of at least 20% is deemed acceptable. Switching contrast

bar graphs are introduced in Figures 7.2, 7.5, 7.6 and 7.9, showing the output signals as

percentages of the optimal signal power of 10mW. The tolerance between the low and high

thresholds is the resultant switching contrast of the logic gate configuration. The higher the

switching contrast, the more accurate the logical ‘0’ and ‘1’ representation is by the real

circuit.

7.4 NAND gate

7.4.1 Configuration I

In Configuration I, a fiber length of L=2300m was used (shorter fiber length is possible with

lower switching contrast), and the ASW reference signal was kept constant at P30=40mW.

The logical output ‘1’ corresponds to several different values of output power, namely
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25.1mW, 25.0mW and 7.48mW for the logical inputs ‘0 0’, ‘0 1’ and ‘1 0’ respectively,

while the logical output ‘0’ corresponds to an output ASW power of 5.47mW.

(a) (b) (c)
Figure 7.2 NAND gate switching contrast plots

(a) Configuration I: Low threshold: 54.7%, High threshold: 74.8%, Tolerance: 20.6%

(b) Configuration II: Low threshold: 35.8%, High threshold: 87.8%, Tolerance: 52.7%

(c) Configuration III: Low threshold: 5.9%, High threshold: 87.7%, Tolerance: 82.8%

As can be seen from Figure 7.2(a), Configuration I has a switching contrast of 20.6%, which

could be acceptable. It is technologically the easiest to implement, since all signals are in

resonance, and no frequency detuning is required.

If a higher switching contrast is desired, amplitude modulation of the P30 input ASW power

is introduced, arriving to Configuration II.

7.4.2 Configuration II

Configuration II is characterized by a slightly shorter fiber length of L=500m, as well as an

amplitude modulation of the input ASW power for various inputs. Namely, for the ‘0 0’, ‘0
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1’ and ‘1 1’ inputs, P30=10mW, while for the ‘1 0’ input, P30=40mW. As a result, output

powers of 8.80mW, 8.78mW, 10.9mW and 3.58mW were obtained for the logical inputs ‘0

0’, ‘0 1’, ‘1 0’ and ‘1 1’ respectively.

As can be seen from Figure 7.2(b), Configuration II has an increased switching contrast of

52.7%. The trade-off is the required change in ASW input power for the “1 0” logical input.

As such, some additional calibrations would be needed to realize the function of this logic

gate, since it would require amplitude switching of the reference ASW signal, making it

more difficult to implement than Configuration I.

To further optimize the switching contrast, detuning of the SW or ASW signals has been

introduced instead of amplitude modulation of the P30 signal in Configuration III.

7.4.3 Configuration III

Figure 7.3 below depicts the output ASW power spectra for typical NAND gate inputs. From

Figure 7.3, it can be seen that it is possible to optimize the output signal via detuning of

either the SW or ASW signals. For each input ‘0 0’, ‘0 1’, ‘1 0’ and ‘1 1’, a detuning greater

than ±3ΓB is sufficient to obtain a maximum switching contrast within 2-3%.

(a) (b)
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(c) (d)

Figure 7.3 Output ASW power spectra.

(a) ‘0 0’ input, (b) ‘0 1’ input, (c) ‘1 0’ input, (d) ‘1 1’ input.

Configuration II utilizes a fiber length of L=350m, as well as detuning of the SW and ASW

to achieve a maximum switching contrast. Namely, for the ‘0 0’, ‘0 1’ and ‘1 0’ inputs, the

ASW is detuned by ±3ΓB, while for the ‘1 1’ input, the SW is detuned by ±3ΓB. As a result,

output powers of 9.32mW, 9.32mW, 8.77mW, and 0.59mW were obtained for the logical

inputs ‘0 0’, ‘0 1’, ‘1 0’ and ‘1 1’ respectively. In this configuration, the reference ASW

signal was held constant at P30=10mW.

Configuration III requires a tunable laser source, capable of detuning the SW and ASW

separately. Although technologically this is more complicated to realize, the tunable

frequency range is very large and, in this case, any detuning outside ±3ΓB (about ±0.3 GHz)

will provide the maximum switching contrast of 82.8%, within 2-3%. As such, this

configuration also benefits from a shorter fiber length of 350m, which acts to compactify the

setup.
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7.5 NOT gate

7.5.1 Configuration IV

Although, according to DeMorgan’s Theorem [95], any logic gate may be constructed from

several NAND gates, practical considerations may require a simplified design of certain

simple gates, such as the NOT, AND, etc. In view of this, the design for an all-optical NOT

gate was considered, using a similar approach as for the NAND gate described in previous

sections. The combination of the NAND and NOT gates may be used to create a simplified

AND gate, which would require minimal calibration and yield a high switching contrast.

In Configuration IV, the initial CW power, P10 , was chosen to be the input signal, and the

output ASW power, P3-out, was taken to be the output signal of the optical gate. In this case,

the input SW is a reference signal, and was held constant at P20=10mW. As before, a power

of 0.1mW was assigned a logical value of ‘0’, while a power of 10mW was assigned a

logical value of ‘1’. Output powers of 9.11mW and 3.89mW were obtained for the logical

inputs ‘0’ and ‘1’ respectively. In this configuration, a fiber length of L=350m was used.

(a) (b)

Figure 7.4 NOT gate switching contrast plots

(a)Configuration IV: Low threshold: 38.9%, High threshold: 91.1%, Tolerance: 52.9%

(b)Configuration V: Low threshold: 13.3%, High threshold: 90.0%, Tolerance: 77.6%
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The proposed configuration of the NOT gate has all the technological benefits of the NAND

gate in Configuration I, as well as a switching contrast of 52.9%, as can be seen from Figure

7.4(a).

7.5.2 Configuration V

Another possible realization of the NOT gate utilizes the two-wave configuration of Brillouin

gain. In this case, the initial SW power, P20, was chosen to be the input signal, and the output

CW power, P1-out , was taken to be the output signal of the optical gate. The input CW was

taken to be the reference signal, and was held constant at P10=10mW. A power of 0.1mW

was assigned a logical value of ‘0’, while a power of 10mW was assigned a logical value of

‘1’. Output powers of 9.0mW and 1.33mW were obtained for the logical inputs ‘0’ and ‘1’

respectively. In this configuration, a fiber length of L=350m was used.

As seen in Figure 7.4(b), the proposed configuration of the NOT gate has a higher switching

contrast of 77.6%, as compared to Configuration IV. Additionally, the current NOT gate,

based on the two-wave SBS interaction is substantially simpler in design, requiring the use of

only two optical waves, as compared to three optical waves.

7.6 AND gate

7.6.1 Configuration VI

In the current configuration, an AND gate is constructed by connecting the NAND gate of

Configuration III with the NOT gate of Configuration IV, shown schematically in Figure 7.5

below.
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Figure 7.5 Schematic of Configuration VI: AND gate.

P10 and P20, represented by CW1 and SW1 in Figure 7.5 above, are the input signals of the

AND gate, while the initial power of the reference signal ASW1 is held constant at

P30=10mW. The output ASW’1 signal from the NAND gate, P3-out, is frequency downshifted

from ω3 to ω1, turning it into an effective CW2 wave, which is the input signal for the NOT

gate. SW2 and ASW2 are the reference signals of the NOT gate, and are kept constant at

10mW. The output signal of the AND gate is the ASW’2 signal. As before, a power of

0.1mW was assigned a logical value of ‘0’, while a power of 10mW was assigned a logical

value of ‘1’. Output powers of 4.02mW, 4.02mW, 4.14mW and 8.31mW were obtained for

the logical inputs ‘0 0’, ‘0 1’, ‘1 0’ and ‘1 1’ respectively. In this configuration, a fiber length

of L=350m was used for both the NAND gate and NOT gate.

(a) (b)

Figure 7.6 AND gate switching contrast plots.

(a) Configuration VI: Low threshold: 40.2%, High threshold: 83.1%, Tolerance: 42.3%

(b) Configuration VII: Low threshold: 16.1%, High threshold: 77.1%, Tolerance: 61.8%
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The same detuning must be applied to optical signals entering the NAND gate as stated in the

description of Configuration III. For the subsequent NOT gate, input signals should be kept

at resonance.

As can be seen from Figure 7.6(a), Configuration VI of the AND gate yields a switching

contrast of 42.3%.

7.6.2 Configuration VII

In the current configuration, an AND gate is constructed by connecting the NAND gate of

Configuration III with the NOT gate of Configuration V, shown schematically in Figure 7.7

below.

Figure 7.7 Schematic of Configuration VII: AND gate.

Similar to Configuration VI, P10 and P20, represented by CW1 and SW1 in Figure 7.7 above,

are the input signals of the AND gate, while the initial power of the reference signal ASW1 is

held constant at P30=10mW. The output ASW’1 signal from the NAND gate, P3-out, is

frequency downshifted from ω3 to ω2, turning it into an effective SW2 wave, which is the

input signal for the NOT gate. The reference signal CW2 is kept constant at 10mW. The

output signal of the AND gate is the CW’2 signal. As usual, a power of 0.1mW was assigned

a logical value of ‘0’, while a power of 10mW was assigned a logical value of ‘1’. Output

powers of 1.47mW, 1.47mW, 1.61mW and 7.71mW were obtained for the logical inputs ‘0
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0’, ‘0 1’, ‘1 0’ and ‘1 1’ respectively. Once again, a fiber length of L=350m was used for

both the NAND gate and NOT gate.

The same detuning must be applied to optical signals entering the NAND gate as stated in the

description of Configuration III. For the subsequent NOT gate, input signals should be kept

at resonance.

As can be seen from Figure 7.6(b), Configuration VI of the AND gate yields a switching

contrast of 61.8%. This is higher than the switching contrast on Configuration VI;

additionally, the setup is substantially simpler since the NOT gate from Configuration V

requires a two-wave SBS interaction.

7.6.3 Configuration VIII

In another possible configuration, loops mirrors [96] and High-Order Mode Fibers (HOM)

[97, 98], are utilized to re-use the fiber under test. Loops mirrors redirect output light back

into a different mode of the HOM, thereby compactifying the setup. In this configuration

only one fiber, which must be an HOM fiber, is required. Since HOM fibers do not maintain

the polarization of propagating light, this configuration is more prone to polarization

instabilities and PMD. Another possibility is to use a PMF, whereby loop mirrors redirect

output light back into a perpendicularly polarized state in the same fiber, similar to the

implemented schemes in [99, 100]. This would also act to compactify the setup, while

helping to eliminate the influence of polarization instability and PMD.
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7.7 OR gate

7.7.1 Configuration IX

To create a functional OR gate, three NAND gates from Configuration III must be connected,

shown schematically in Figure 7.8 below.

Figure 7.8 Schematic of Configuration IX: OR gate.

CW1 and SW1, as well as CW2 and SW2 in Figure 7.8 above, are the input signals of the OR

gate. CW1 and SW1, and CW2 and SW2, must always have identical power. The initial power

of the reference signals ASW1 and ASW2 is held constant at 10mW. The output ASW’1

signal from NAND gate 1 is frequency downshifted from ω3 to ω1, turning it into an

effective CW3 wave, which is an input signal for the NAND gate 3. The output ASW’2 signal

from NAND gate 2 is frequency downshifted from ω3 to ω2, turning it into an effective SW3

wave, which is another input signal for the NAND gate 3. The reference signal of NAND

gate 3, ASW3, is held constant at 10mW. The output signal of the OR gate is the ASW’3

signal. A power of 0.1mW was assigned a logical value of ‘0’, while a power of 10mW was

assigned a logical value of ‘1’. Output powers of 0.68mW, 8.89mW, 9.31mW and 9.29mW
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were obtained for the logical inputs ‘0 0’, ‘0 1’, ‘1 0’, and ‘1 1’ respectively. A fiber length

of L=350m was used for all three NAND gates.

The same detuning must be applied to optical signals entering all three NAND gates as stated

in the description of Configuration III.

Figure 7.9 OR gate switching contrast plot.

Low threshold: 6.8%, High threshold: 88.9%, Tolerance: 83.0%.

As can be seen from Figure 7.9, Configuration IX of the OR gate yields a switching contrast

of 83.0%. Though the current configuration is more complicated than the previous ones, it

also yields an extremely high switching contrast.

7.7.2 Configuration X

In the current configuration, an OR gate is constructed by connecting a NAND gate with two

3-wave NOT gates, shown schematically in Figure 7.10 below.
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(a)
(b)

Figure 7.10 (a) Schematic of Configuration X: OR gate, (b) OR gate switching contrast plot,

Low threshold: 7.04%, High threshold: 90.6%, Tolerance: 83.6%.

CW1, as well as CW2, in Figure 7.10(a) above, are the input signals of NOT gate 1 and NOT

gate 2, respectively, as well as the two input signals of the OR gate. Similarly, SW1 and

ASW1, as well as SW2 and ASW2, are the reference signals of each NOT gate, which are

held constant at 10mW. The output ASW’1 signal from NOT gate 1 is frequency downshifted

from ω3 to ω1, turning it into an effective CW3 wave, which is an input signal for the NAND

gate. The output ASW’2 signal from NOT gate 2 is frequency downshifted, from ω3 to ω2,

turning it into an effective SW3 wave, which is another input signal for the NAND gate. The

reference signal of the NAND gate, ASW3, is held constant at 10mW. The output signal of

the OR gate is the ASW’3 signal. Output powers of 0.704mW, 9.24mW, 9.06mW, and

9.19mW were obtained for the logical inputs ‘0 0’, ‘0 1’, ‘1 0’, and ‘1 1’, respectively. A

fiber length of L=350m was used for all three gates.

As can be seen from Figure 7.10(b), Configuration X of the OR gate yields a high switching

contrast of 83.6%. This is comparable to the OR gate proposed in Configuration IX, which

has a switching contrast of 83.0%. Additionally, NOT gate 1 and NOT gate 2 have only one

input each, namely CW1 and CW2 respectively. The SW1 and ASW1, and SW2 and ASW2,

respectively, are kept as reference signals. In the OR gate of Configuration IX, a NAND gate

1 and a NAND gate 2 are employed – each having two input signals, CW1 and SW1, and

CW2 and SW2, respectively, which must be carefully calibrated to match each other for each

logical input. Such calibration is time-consuming, and often difficult to achieve.
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Configuration X eliminates this difficulty by employing NOT gate 1 and NOT gate 2, which

by virtue of the operation of a NOT gate, have only one input signal each, and do not require

any such calibration. As a result, Configuration X of the all-optical OR gate has the benefit

of being simpler to operate and more compact as compared to the existing variant of

Configuration IX.

7.7.3 Configuration XI

In the current configuration, an OR gate is constructed by connecting a NAND gate with two

2-wave NOT gates, shown schematically in Figure 7.11 below.

(a) (b)
Figure 7.11 (a) Schematic of Configuration XI: OR gate, (b) OR gate switching contrast plot,

Low threshold: 7.22%, High threshold: 89.6%, Tolerance: 82.4%.

SW1, as well as SW2, in Figure 7.11(a) above, are the input signals of NOT gate 1 and NOT

gate 2, respectively, as well as the two input signals of the OR gate. Similarly, CW1 and CW2

are the reference signals of NOT gate 1 and NOT gate 2, respectively, which are held

constant at 10mW. The output CW’1 signal from NOT gate 1 is redirected towards the

NAND gate into an effective CW3 wave, which is an input signal for the NAND gate. The

output CW’2 signal from NOT gate 2 is frequency downshifted from ω1 to ω2, turning it into

an effective SW3 wave, which is another input signal for the NAND gate. The reference

signal of the NAND gate, ASW3, is held constant at 10mW. The output signal of the OR gate
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is the ASW’3 signal. Output powers of 0.722mW, 8.96mW, 9.29mW, and 9.26mW were

obtained for the logical inputs ‘0 0’, ‘0 1’, ‘1 0’, and ‘1 1’, respectively. A fiber length of

L=350m was used for all three gates.

As can be seen from Figure 7.11(b), Configuration XI of the OR gate yields a high switching

contrast of 82.4%. In addition to the existing benefits of using two NOT gates in place of two

NAND gates, as discussed in section 7.7.2, another benefit of Configuration XI is that only

one frequency downshift is required, from CW'2 to SW3, which greatly increases accuracy

and ease of operation, while decreasing the bulk. In summary, the setup of Configuration XI

is even simpler to operate and more compact than that of Configuration X, without any

significant compromise on switching contrast.

7.8 General method of logic gate construction

In the previous sections 7.4-7.7, configurations to realize NAND/NOT/AND/OR gates are

proposed. In these sections, specific parameters of the fiber are defined for ideal operation of

the proposed gates. In the current section, we will outline a method by which it is possible to

find other parameters of the fiber, to realize functional optical gate configurations.

7.8.1 Configuration V: NOT gate

The NOT gate of Configuration V is the simplest, so we will start with this one. Figure 7.12

depicts a flow chart describing the steps of an algorithm needed to find the correct

parameters to realize a NOT gate of Configuration V.
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Figure 7.12 Flow chart for NOT gate of Configuration V.

Four counters are set, n1, n2, n3, and n4, with maximum values N1max, N2max, N3max, N4max, to

‘sift’ through: i) the parameters of the optical fiber, ii) the length L of the fiber, iii) the power

of the reference signal, and iv) the low and high powers of the input signal. With this

arbitrary choice of initial parameters, length and powers, the differential equations

(7.7)-(7.11) are solved, denoted by ‘Run Algorithm’, after which each counter is increased. If

the high threshold, denoted as ‘A,’ is higher than the low threshold, denoted as ‘B,’ by a

value greater than the switching contrast, denoted as ‘SC,’ then the gate parameters are found.
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If not, the algorithm is repeated with a different combination of fiber parameters, length and

powers until the correct gate parameters are found.

7.8.2 Configuration IV: NOT gate

For the slightly more complex setup of the NOT gate of Configuration IV, we have the flow

chart of Figure 7.13.

Figure 7.13 Flow chart for NOT gate of Configuration IV.
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For the algorithm of the NOT gate of Configuration IV, an additional counter is added, n5,

with maximum N5max, to take into account the power of the second reference signal. The rest

of the algorithm remains unchanged.

7.8.3 Configurations I and II: NAND gates

For the NAND gates of Configurations I and II, which do not have frequency detuning, we

have the following flow chart, shown in Figure 7.14 below.

Figure 7.14. Flow chart for NAND gate of Configurations I and II.
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For the algorithm of the NAND gates of Configurations I-II, the additional counter added, n5,

is used to take into account the second low power and second high power of the second input

signal. ‘C,’ ‘D,’ ‘E,’ and ‘F’ are denoted as the output powers for the effective input

combinations of ‘0 0,’ ‘0 1,’ ‘1 0,’ and ‘1 1’, which are simulated by the combination of low

power and second low power, low power and second high power, high power and second

low power, and high power and second high power. For the NAND gate, for which the

corresponding outputs should be ‘1,’ ‘1,’ ‘1,’ and ‘0’ respectively, C, D, E are evaluated in

comparison to F. If C, D, E > F by a value greater than the switching contrast, ‘SC,’ then the

smallest of C, D, E are set as the high threshold, and F is set as the low threshold. Otherwise,

the counters are increased and the algorithm continues to ‘sift’ through other parameters of

the fiber.

7.8.4 Configuration III: NAND gate

For the NAND gate of Configuration III, which has frequency detuning, we have the

following flow chart, shown in Figure 7.15 below.
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Figure 7.15 Flow chart for NAND gate of Configuration III.

In the algorithm of the NAND gate of Configuration III, an additional counter is added, n6,

with maximum N6max, to take into account the detuning of the Stokes or anti-Stokes waves.

The rest of the algorithm remains unchanged as compared to the NAND gates of

Configurations I-II.
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7.8.5 3D parametric model applications in photonic logic

An additional important application of the 3D parametric model of Chapter 3 is in photonic

logic. In section 7.5.2, the construction of an optical NOT gate of Configuration V, utilizing

the mechanisms of SBS, has been described. To obtain a high switching contrast of 77.6%,

such as the one obtained in section 7.5.2, it is important to find the correct combination of

fiber parameters. The initial Stokes power, PSW, was chosen to be the input signal, and an

output CW power, Ppump-out,was taken to be the output signal of the optical gate. The input

CW power was taken to be the reference signal, and was held constant at Ppump=10mW. An

input power of 0.1mW was assigned a logical value of “0,” while an input power of 10mW

was assigned a logical value of “1.” Output powers of 9.0mW and 1.33mW were obtained

for the logical inputs “0” and “1,” respectively, yielding the switching contrast of 77.6%. In

the configuration described in Section 7.5.2, a SNF-28 fiber was used, of length 350m, and a

1550nm laser.

The Brillouin surface can be used to reconstruct this optical gate for any combination of

parameters, not only for the ones used in Section 7.5.2. For example, it is possible to

reproduce the optical logic gate of Section 7.5.2 for the SMF-28e fiber, 1310nm laser, and

1000m fiber, used in Chapter 3, by referring to the Brillouin surface in Figure 3.3. From

Figure 3.3, it is seen that a reference input CW beam of 10mW corresponds to β3=6.4, hence

all combinations of parameters must be on the parametric curve corresponding to β3=6.4.

Furthermore, the output CW power of Ppump-out=1.33mW, corresponding to the “0” output, in

turn corresponds to β1=0.88. For the parameters taken in this manuscript, this yields an input

Stokes power of PSW=1.4mW. Likewise, the output CW power of P1-out=9.0mW,

corresponding to the “1” output, in turn corresponds to β1=0.002. Again, for the parameters

taken in this manuscript, this yields an input Stokes power of PSW=0.003mW. Hence, just by

looking at the Brillouin surface in Figure 3.3, it is possible to find the combination of

parameters of the fiber, to re-create the optical logic gate described in section 7.5.2. Of

course, the 3D parametric model may also be used to construct an optical gate with a higher

switching contrast than the one disclosed in section 7.5.2, or for different, more practical,

input powers.
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7.9 Proposed Experimental Configurations

7.9.1 Configurations I-V

A proposed experimental setup to test the functionality of the NAND/NOT gates proposed in

sections 7.4-7.5 is shown in Figure 7.16(a) below. Similar to the ODPA-BOTDA sensor

described in [65], the current experimental setup has a DFB laser with a wavelength at

1550nm and an output power which may be varied from 10-40mW. The output light from

DFB laser is split into two parts by a fiber coupler CC1. One part works as a CW and is sent

to the fiber directly. An EDFA1 is used to vary the power of this CW light wave. The other

part is modulated by an EOM1 to generate two side bands with optical carrier suppressed. A

circulator C1 and an FBG1 is applied to separate the upper side band and lower side band.

Two optical pulse widths are generated by two EOMs (EOM2 and EOM3) after the FBG1,

EDFA2 and EDFA3 are used to control the power of each wave individually. After the

generation of the SW and ASW pulses, fiber coupler CC2 is used to combine the two pulses

together, after which the combined SW and ASW were sent to the testing fiber. After passing

through the fiber, a circulator C2 relays the combined SW and ASW to another FBG2, which

filters out the desired ASW signal, after which an AC coupled photo detector is used to

detect the ASW signal.

In the case of a NAND gate of Configurations I-III, the input signals are controlled by

EDFA1 and EDFA3, which regulate the initial CW and SW powers respectively, while

EDFA2 is used to keep the power of the initial ASW constant (10mW). In the case of the

NOT gate of Configuration IV, the input signal is controlled by EDFA1, while EDFA2 and

EDFA3 are used to keep the powers of the initial SW and ASW constant (10mw)

respectively. For both gates, the output ASW signal is measured at the photo detector.

For the case of the NOT gate of Configuration V, which requires only a CW and SW, the

proposed experimental setup is shown in Figure 7.16(b). EOM1 acts to create only one

sideband with optical carrier suppressed, and the EDFA2 acts to control the power of the
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resulting SW. In this case, circulator C2 is moved to the opposite end of the optical fiber, and

the output CW wave is measured by the photo detector.

(a)

(b)

Figure 7.16 NOT experimental setup for test of NAND/NOT gates.

(a) Configurations I-IV, (b) Configuration V.

DFB: Distributed Feedback, RF: radio frequency, C: circulator, CC: fiber coupler,

FUT: fiber under test, I: isolator, EOM: Electro-Optic Modulator, FBG: Fiber Bragg Grating,

PC: polarization controller, EDFA: Erbium-doped fiber amplifier, DAQ: Data Acquisition.
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7.9.2 Configurations VI

In the current configuration, an AND gate is constructed by connecting the NAND gate of

Configuration III with the NOT gate of Configuration IV, shown in Figure 7.17 below.

Similar to Figure 7.16, the signal from the DFB laser is split by circulator C1 into a SW and

ASW via FBG1, while EOM2 and EOM3 detune the SW and ASW signals individually. In

this case, before the two waves are recombined, couplers CC4 and CC5 redirect the SW and

ASW, to later act as reference signals for the NOT gate. EDFA5 and EDFA4 are used to

control the power of the redirected SW and ASW waves respectively, keeping them constant

(10mW). The NAND gate is represented by the first fiber under test (FUT1). The output

ASW from FUT1, P3-out, after being separated from its output SW counterpart by FBG3, is

passed through a ring resonator RR1 which is utilized to downshift the frequency of the

ASW from ω3 to ω1, which is the frequency of the CW. The resulting converted CW wave

acts as an input signal for the NOT gate, represented by FUT2. Reference signals ASW and

SW are recombined by coupler CC6 and injected into FUT2 from the opposite end, and as

previously, the output ASW is filtered by FBG4 before being measured by the photo

detector.
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Figure 7.17 Configuration VI: AND gate.

DFB: Distributed Feedback, RF: radio frequency, C: circulator, CC: fiber coupler,

RR: ring resonator, FUT: fiber under test, I: isolator, EOM: Electro-Optic Modulator,

FBG: Fiber Bragg Grating, PC: polarization controller, EDFA: Erbium-doped fiber amplifier,

DAQ: Data Acquisition.

Similar to Figure 7.16(a), EDFA1 and EDFA3 control the input signals of the AND gate, P10

and P20, while EDFA2 is used to keep the power of the initial ASW constant (10mW). The

output ASW from FUT2 is measured by the photo detector.
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7.9.3 Configurations VII

In the current configuration, an AND gate is constructed by connecting the NAND gate of

Configuration III with the NOT gate of Configuration V, shown in Figure 7.18 below. The

dotted lines represent extension to the experimental setup of Figure 7.16(a).

Figure 7.18 Configuration VII: AND gate.

DFB: Distributed Feedback, RF: radio frequency, C: circulator, CC: fiber coupler,

RR: ring resonator, FUT: fiber under test, I: isolator, EOM: Electro-Optic Modulator,

FBG: Fiber Bragg Grating, PC: polarization controller, EDFA: Erbium-doped fiber amplifier,

DAQ: Data Acquisition.

In this configuration, the output ASW, P3-out, after being filtered by FBG3, is passed through

a ring resonator RR1, which downshifts the frequency of the optical signal from ω3 to ω2,

which is the frequency of the SW. The resulting converted SW wave acts as an input signal

for the NOT gate, represented by FUT2. A CW reference signal is injected into FUT2 from

the opposite end. The output CW signal from FUT2 is measured by the photo detector.

In this case, EDFA1 and EDFA3 (Figure 7.16(a)) are used to regulate the input signals of the

AND gate, P10 and P20, while the output CW from FUT2 is measured by the photodetector.
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7.9.4 Configurations IX

To create a functional OR gate of Configuration IX, three NAND gates from Configuration

III must be connected, shown in Figure 7.19 below. In this case, FUT1, FUT2 and FUT3

represent the three NAND gates, NAND1, NAND2 and NAND3 respectively. In this case,

both inputs to NAND1 and NAND2 are identical. For this reason, the power of the CW and

SW signals, which is controlled by attenuators EDFA1 and EDFA3, for NAND1, and

EDFA7 and EDFA8, for NAND2, must be made identical. Similar to Figure 7.17, before the

generated SW and ASW are recombined by a coupler CC2, another coupler CC4 is used

redirect the ASW, to later act as reference signals for the NAND3. The output ASW from

NAND1 is passed through ring resonator RR1, which downshifts its frequency from ω3 to ω1,

which is the frequency of the CW. The resulting converted CW wave acts as an input signal

for NAND3. The output ASW from NAND2 is passed through ring resonator RR2, which

downshifts its frequency from ω3 to ω2, which is the frequency of the SW. The resulting

converted SW wave acts as the second input signal for NAND3, and is injected into FUT3 at

the opposite end, after being recombined with the redirected ASW by coupler CC7. The

output ASW signal from FUT3 from is then filtered by FBG4 and measured by the photo

detector.
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Figure 7.19 Configuration IX: OR gate.

DFB: Distributed Feedback, RF: radio frequency, C: circulator, CC: fiber coupler,

RR: ring resonator, FUT: fiber under test, I: isolator, EOM: Electro-Optic Modulator,

FBG: Fiber Bragg Grating, PC: polarization controller, EDFA: Erbium-doped fiber amplifier,

DAQ: Data Acquisition.

In this case, EDFA1 and EDFA3, and EDFA7 and EDFA8, are used to regulate the input

signals of the AND gate, while the output ASW from FUT3 is measured by the photo

detector.

The same detuning must be applied to optical signals entering FUT1 (NAND gate 1), FUT2

(NAND gate 2) and FUT3 (NAND gate 3), as described in Table 3 of Configuration III. To
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accomplish this, combined SW and ASW signals by coupler CC2 are split by coupler CC9

into two paths, one path is injected into FUT1, while the SW and ASW signals on the second

path are split by circulator C5 and separated by FBG6. In this way, it is possible to detune the

SW and ASW separately by EOM4 and EOM5, such that the resulting recombined signals by

coupler CC8 are detuned accordingly, before being injected into FUT2.

7.9.5 Configurations X

The setup to create a functional OR gate of Configuration X is very similar to that of

Configuration IX depicted in Figure 7.19. The difference is that two NOT gates of

Configuration IV and one NAND gate from Configuration III must be connected. Keeping

this difference in mind, it follows that FUT1 and FUT2 represent the two NOT gates, NOT1

and NOT2 respectively, and FUT3 represents the NAND gate, NAND3 respectively. In this

case, only one input to NOT1 and NOT2 exist, which are the CW signals controlled by

attenuators EDFA1 for NOT1 and EDFA8 for NOT2. The ASW and SW reference signals,

which are controlled respectively by attenuators EDFA2 and EDFA3 for NOT1, and EDFA6

and EDFA7 for NOT2, are kept constant at 10mW. Similar to Figure 7.17, before the

generated SW and ASW are recombined by a coupler CC2, another coupler CC4 is used

redirect the ASW, to later act as reference signals for the NAND3. The output ASW from

NOT1 is passed through ring resonator RR1, which downshifts its frequency from ω3 to ω1,

which is the frequency of the CW. The resulting converted CW wave acts as an input signal

for NAND3. The output ASW from NOT2 is passed through ring resonator RR2, which

downshifts its frequency from ω3 to ω2, which is the frequency of the SW. The resulting

converted SW wave acts as the second input signal for NAND3, and is injected into FUT3 at

the opposite end, after being recombined with the redirected ASW by coupler CC7. The

output ASW signal from FUT3 from is then filtered by FBG4 and measured by the photo

detector.
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7.9.6 Configurations XI

The setup to create a functional OR gate of Configuration XI is comprised of two NOT gates

of Configuration V and one NAND gate from Configuration III. To realize this setup, the

experimental setups from Figure 7.16(b) must be combined with the experimental setup of

7.16(a), shown below in Figure 7.20. In this case, FUT1 and FUT2 represent the two NOT

gates, NOT1 and NOT2 respectively, and FUT3 represents the NAND gate, NAND3

respectively. In this case, only one input to NOT1 and NOT2 exist, which are the SW signals

controlled by attenuators EDFA3 for NOT1 and EDFA7 for NOT2. The CW reference

signals, which are controlled respectively by attenuators EDFA1 for NOT1, and EDFA8

NOT2, are kept constant at 10mW. Since the NOT gates in this setup are 2-wave NOT gates,

the SW and ASW waves are no longer recombined by a coupler CC2, the ASW is simply

redirected to later act as a reference signal for the NAND3. The output CW from NOT1 is

passed directly to the FUT3, the redirected CW wave acts as an input signal for NAND3. The

output CW from NOT2 is passed through ring resonator RR1, which downshifts its

frequency from ω1 to ω2, which is the frequency of the SW. The resulting converted SW

wave acts as the second input signal for NAND3, and is injected into FUT3 at the opposite

end, after being recombined with the redirected ASW by coupler CC7. The output ASW

signal from FUT3 from is then filtered by FBG4 and measured by the photo detector.
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Figure 7.20 Configuration XI: OR gate.

DFB: Distributed Feedback, RF: radio frequency, C: circulator, CC: fiber coupler,

RR: ring resonator, FUT: fiber under test, I: isolator, EOM: Electro-Optic Modulator,

FBG: Fiber Bragg Grating, PC: polarization controller, EDFA: Erbium-doped fiber amplifier,

DAQ: Data Acquisition.

In this case, EDFA3 and EDFA7, are used to regulate the input signals of the AND gate,

while the output ASW from FUT3 is measured by the photo detector.
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7.10 Bit rate

Because optical gates based on the process of SBS, or combined Brillouin gain and loss, are

limited by a phonon relaxation time of about 10ns, and because of the narrowband

characteristic of Brillouin amplification, the bit rate of the Brillouin signal is limited to tens

of megabits per second [101, 102]. However, there are a number of techniques aimed at

increasing the Brillouin gain bandwidth, thereby supporting a higher bit rate. These include a

simple pump-spectral broadening technique [103, 104] via direct- modulation of the pump

laser using a pseudorandom binary sequence (PRBS) data, a Gaussian noise source.

Alternatively, the pump wave can be broadened by using an external phase modulator (PM),

which has been demonstrated to yield bit rates between 1-2.5 Gb/s [101, 105]. Comparatively,

bit rates between 10 Gb/s to 100 Gb/s have been claimed by other technologies to construct

optical logic units [37, 43, 49, 51, 106, 107]. Though these alternative constructions have

higher bit rates, they also include numerous drawbacks, including configurations which are

both bulky and require extensive calibration, and fall victim to spontaneous emission noise,

time dependent modulation due to time jitter, and birefringence induced signal distortion.

The technique based on combined Brillouin gain and loss, disclosed in this chapter, is free of

polarization-induced signal fluctuations which cause spectral distortion, thereby making the

lower bit rate a worthy trade-off.

7.11 Summary

A novel fiber nonlinearity-based technique has been proposed to realize all-optical

NAND/NOT/AND/OR logic gates, based on the principles of combined Brillouin gain and

loss in a PMF. Switching contrasts are simulated to be between 20-83%, for various

configurations. In addition, the technique is not limited by polarization instabilities or PMD.

Additionally, a general method for constructing optical gates has been proposed in the form

of an algorithm.

Finally, experimental configurations have been proposed to realize the optical logic gates of

Configurations I-XI.
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Chapter 8

Conclusion

8.1 Thesis Outcomes

The main focus of the research presented in this thesis was on the theoretical investigation of

stimulated Brillouin scattering (SBS), as well as combined Brillouin gain and loss, in optical

fibers and their application to current technologies in fiber sensing, photonic logic, and

telecommunications.

Experimentally verified fully analytic expressions have been obtained for the Brillouin

amplification process without any underlying assumptions about the behaviour of the pump

or pulse waves. Additionally, for the first time, analytic solutions for the output pump and

Stokes spectra have been obtained to good accuracy, as well as an expression for the FWHM,

which have been confirmed experimentally. In sensing applications, the 3D parametric

model may be used to avoid parameter combinations which yield the unwanted spectral

distortion effect, such as in distributed sensing where pump depletion is substantial. The 3D

parametric model can also be used to classify the similarity between various Brillouin

amplification processes, making it possible to obtain the same pump or Stokes output

intensity with a different collection of parameters of the fiber. This, in particular, has useful

applications in the construction of all-optical logic gates.

Regarding applications in telecommunications, the SBS process has been used to develop an

improved method of phase-modulation, and applied in the conceptualization of an optical

phase-modulator based on the principles of SBS, as well as an optical phase network

employing the same.

Polarization and birefringence effects on SBS, and combined Brillouin gain and loss, in an

optical fiber have been investigated. The most general model of elliptical birefringence in an
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optical fiber has been developed and extended to describe a transient Brillouin interaction

including gain, loss, and combined gain and loss. The subsequent investigation of SBS

spectral distortion effects, caused by the birefringence and polarization of the optical fiber,

showed that these effects can be used for measuring the degree of non-ideally linearly

polarized light, finding regimes which are preferable for measurement in fiber sensing, and

for preserving the full width at half maximum (FWHM) and pulse fidelity of the Brillouin

spectral shape, which has applications in telecommunications and data transmission. In the

combined Brillouin gain and loss regime, it has been shown that the spectral distortion

caused by birefringence can be minimized by choosing pump and pulse powers with a large

disparity, thereby increasing the ease of operation of the optical differential parametric

amplification in optical differential parametric amplification (ODPA-BOTDA) systems.

Finally, the theory of combined Brillouin gain and loss has been employed to propose a novel

fiber nonlinearity-based technique to realize all-optical NAND/NOT/AND/OR logic gates in

polarization-maintaining fibers (PMF). Switching contrasts are simulated to be between

20-83% for various configurations. In addition, the technique is not limited by polarization

instabilities or PMD. Finally, experimental configurations have been proposed to realize the

optical logic gates.

8.2 Future Work

Future research directions could include the experimental verification of the theoretical

works presented in this thesis. Namely, experimental confirmation of the optical

phase-modulator of Chapter 4, as well as the optical network employing the optical

phase-modulator, would be a logical next step in the development of this technology.

For the all-optical logic gates proposed in Chapter 7, an interesting avenue for research could

include the use of chalcogenide fibers in place of silica fibers to realize the all-optical gates.

Chalcogenide fibers are characterized by pronounced optical nonlinearities. Compared to

silica, for example, the nonlinear refractive index of As2S3 glass is about 1000 larger [61, 108,
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109, 110, 111, 112], and the Brillouin gain coefficient was reported to be between 100-600

times larger than in fused silica [108, 111]. As a result, a comparable gain may be

accomplished in chalcogenide fibers of a few meters as compared to silica fibers of hundreds

of meters, which would greatly compactify the setups described in Chapter 7. Additionally,

the 3D parametric model may be used to characterize this new chalcogenide optical gate, as

described in section 7.8.5. Furthermore, realization of the experimental configurations

proposed in section 7.9, as well as performing multiple-gate connections, would be an

important next step in the development of the photonic logic technology.

Regarding the theoretical investigation of polarization and birefringence effects, additional

studies could be performed to investigate the effects of a non-uniform fiber on spatial

resolution, by simulating different sound velocities for different segments of the optical fiber.

Additionally, it would also be interesting to see the spectral evolution as a function of

coordinate inside the optical fiber, z. It has been shown experimentally [113] that a spectral

"oscillation" occurs inside the fiber; future work could include modeling this behaviour

theoretically and seeing how the spatial period of these oscillations is related to the PMD and

beat length of the fiber. Additionally, experimental verification of the current theory could be

performed by inducing elliptical birefringence in a PMF fiber by twisting it in a controlled

way and performing measurements on the twisted fiber.
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Appendix

A. Derivation of the system of equations (5.1)-(5.4)

Let us consider the simple case of two propagation constants in the fiber, x and y . If a light

with an angular frequency ω was injected into the fiber, the electric fields could be written in

the following form, in terms of their principal axis of polarization

        ytzkiExtzkiEtzE yyxx
   expexp,1 (A.1)

Where yyxx   1 and 0yx  . Considering two counter-propagating beams in

the fiber, we can individually write them for the +z-propagating light,

        111111111 expexp, ytzkiExtzkiEtzE yyxx
   (A.2)

And the – z-propagating light,

        222222222 expexp, ytzkiExtzkiEtzE yyxx
   (A.3)

The beating via electrostriction in the fiber due to the two light waves can be written

explicitly
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(A.4)

In the most general case of elliptical birefringence, we will have 1212 1 yyxx   and
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furthermore 1212 0 yxxy   . The direct physical consequence of this is that there are

now four acoustic running waves.

Taking the steady state approximation, we have the complex acoustic field amplitude for the

simplest case of zero birefringence, where q=q1≈2k1 as defined in Chapter 2:
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e ,, 12
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To generalize the result to the case of elliptical birefringence, where it is expected to have the

corresponding resonance frequency associated with the principal birefringence axes, we

make ΩB to be functions of the polarization principal axis beatings [30], with ΩBxx, ΩByy, ΩBxy

and ΩByx as defined in Chapter 5. Furthermore, the following approximation is used
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(A.6)

as well as the approximation  
c

nnn
c

kkq  21
221121  , where n and  are

taken to be the averages of n1 and n2, and ω1 and ω2 respectively. It is then possible to have

the following approximate complex acoustic field amplitudes,
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Paying attention to the original case without birefringence in equation (A.5), it is possible to

generalize our result. Recall that non-birefringent lights were assumed to undergo ideal

power transfer between the pump wave and the Stokes wave, as would be the case when both

these waves are parallel-polarized (under the slowly varying amplitudes, A1 and A2,

approximation),
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In equations (A.8) and (A.9), ρ0 is the mean density of the fiber. Generalizing the above

system of equations (A.8) and (A.9) to the case of birefringence we take the following,
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The attenuations α1x, α1y, α2x, and α2y represent the fiber attenuations of the principal axes of

polarizations 1x , 1y , 2x and 2y , respectively. Finally, using the identity

 σS  xxx 1
2
1

which links the Jones matrix unit vector to its Stokes vector Sx on the

Poincaré sphere via the Pauli matrix σ, as well as the simplifications for 1n , 1n , 2n ,

2n , 1 , 1 , 2 , and 2 , we arrive at the system of equations (5.1)-(5.4).
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B. Fourth Order Runge-Kutta Method of Solution

Using the Fourth Order Runge-Kutta (RK4) numerical method, the solution to the system of

equations (5.20)-(5.23) is summarized in equations (B.1)-(B.4), where n is the temporal step,

and j is the spatial step.
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The coefficients Ki, Li, Qi, Ri, where i=1,2,3,4 are defined as:
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