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1. INTRODUCTION
Since the discovery of stimulated Brillouin scattering (SBS) in
optical fibers, several mathematical models of the pump-
probe interaction undergoing SBS in the steady-state regime
have emerged, which are valid for pulse lengths greater than
the phonon relaxation time [1]. The two-wave interaction is
modeled by a system of ordinary differential equations, which
in most cases [2,3] has been solved numerically. However,
numerical solutions do not lend themselves easily to the high
pump wave depletion-related optimization procedures that
are essential for applications in strain and temperature sens-
ing. For example, distributed sensing, using erbium-doped fi-
ber amplifiers (EDFAs) and distributed Raman amplifiers
[4–6], has the potential to lead to high pump depletion and
would require an appropriately accurate solution.

Several attempts have been made to find analytical solu-
tions of this system of equations. The most common is the un-
depleted pump approximation (UPA), employed in [7], which
imposes the assumption that the pump wave depletion, due to
energy transfer between the pump and probe waves, is neg-
ligible. The lack of pump wave depletion is a coarse approxi-
mation that does not reflect the challenges of fiber sensing
techniques.

In [8,9], an analytical solution for a lossless fiber has been
attempted without putting limits on the level of depletion.
However, this attempt has been only partially successful—
the system of ordinary differential equations has been reduced
to a transcendental equation, which still had to be solved
numerically.

An interesting technique has been used in [1] to find the
analytical solutions for a lossy fiber, placing no limits on
the level of depletion in the fiber. The system of ordinary dif-
ferential equations has been reduced to a transcendental
equation involving an integral, which, unfortunately, could
be evaluated only numerically. As a result, neither intensity

distribution along the fiber, nor Brillouin spectra could be
expressed analytically.

A variation of the perturbation technique has been used in
[10] with the intention of obtaining an analytical solution for a
lossy fiber. However, a solution in the zero-approximation
with respect to the attenuation constant has been taken from
[9], which, as described above, requires the numerical solu-
tions of a transcendental equation. Contrary to the claim in
[10], only a hybrid solution has been obtained, which extends
the solution in [8] to a lossy fiber, but otherwise has similar
limitations.

Thus, previously obtained solutions are numerical with
analytical portions, and, therefore, qualify as hybrid solutions.
Though the analytical portions provide useful information
about intensity distribution along the fiber, they fall short
in describing spectral characteristics of the Brillouin amplifi-
cation conveyed by the transcendental equation. The lack of
analytical expressions for Brillouin spectra substantially lim-
its the utility of the hybrid solution [8] for applications, since
spectral measurement is a leading technique for strain and
temperature sensing. Methods of avoiding systematic errors
in distributed fiber sensing are described in [3,11–13] but
do not include the correct conditions under which an undesir-
able effect of spectral distortion occurs in optical fibers, nor
how to more accurately obtain a Lorentzian profile for sensing
applications.

We propose fully analytic solutions for calculating the
distribution of continuous wave (CW) and probe wave
(PW) Brillouin intensities and phases, for an arbitrary pump
depletion (0%–100%), and an arbitrary range of pump and
probe intensities, in fiber lengths of up to a few kilometers.
These solutions are valid for expressing the Brillouin
spectrum under different depletion conditions, including
the spectral distortion effect that occurs for high levels of
pump depletion and high probe powers, which has been
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confirmed experimentally. Additionally, we propose a 3D
parametric model to aid in avoiding the undesirable spectral
distortion via limitations of the parameter space that is
relevant to Brillouin fiber sensor applications, as well as
photonic logic.

2. MODEL
The process of SBS has been studied in a lossless single mode
optical fiber, with core radius of 4.1 μm. Attenuation terms have
been neglected due to the short fiber lengths inherent in the
model. The configuration is composed of a CW launched into
one end and a PW launched into the other end of the
optical fiber. The schematic arrangement, and intensity
distribution, is shown in Fig. 1 below. The pump wave experi-
ences depletion while the probe wave experiences amplifica-
tion (gain).

The counter-propagating CW and PW induce density
variations of the fiber through electrostriction, creating an
acoustic grating, or wave, which participates in the SBS inter-
action [1]. In the slowly varying amplitude approximation, the
steady state interaction between the CW and the PW and an
acoustic wave (AW) is described by the following system of
equations [9]. The system is deemed to operate in the steady-
state regime with pulse lengths greater than 10 ns:

∂A1

∂z
� iω1γe

2ncρ0
ρ1A2; (1.1)

∂A2

∂z
� iω2γe

2ncρ0
ρ�1A1; (1.2)

�Ω2
B −Ω2

1 − iΩ1ΓB�ρ1 �
γeω

2
1n

2

πc2
A1A�

2 ; (1.3)

where Ω1 � ω1 − ω2 is the angular frequency of the AW
caused by the interaction of CW and PW, A1 is the complex
amplitude of the CW, A2 is the complex amplitude of the PW,
ρ1 is the complex amplitude of the AW caused by the interac-
tion of CW and PW, c is the speed of light, ρ0 is the density of
the fiber, γe is the electrostrictive constant, z is the coordinate
along the fiber, n is the index of refraction of the fiber, v is the
speed of sound in the fiber, ΓB is the Brillouin linewidth, ΩB is
the Brillouin frequency defined as ΩB � 2nvω1∕c, where ω1 is
the angular frequency of the CW, and ω2 is the angular fre-
quency of the PW.

In the above arrangement, the PW input parameters are
known only at the beginning of the fiber, i.e., at z � 0. Corre-
spondingly, the CW input parameters are known only at the
end of the fiber, i.e., at z � L, where L is the length of the fiber.
Therefore, the boundary conditions for system (1) are as
follows:

jA1�L�j2 � A2
10; jA2�0�j2 � A2

20; (2)

where A2
10 and A2

20 are known squared absolute values of the
complex amplitudes A1 and A2, respectively.

The goal is to find analytical expressions for the intensities
of the CW and PW. In the dimensionless notation, the system
(1) becomes

dY 1

dl
� β1 · Y 1Y 2; (3.1)

dY 2

dl
� β3 · Y 1Y 2; (3.2)

���� ρ1ρ0
����2 � β5 · Y 1Y 2; (3.3)

with corresponding boundary conditions

Y 1�1� � 1; Y 2�0� � 1: (4)

The dimensionless variables l � �z∕L�, Y 1 � �I1∕I10�, and
Y 2 � �I2∕I20� have been introduced to derive the system
(3), as well as the following β-coefficients:

β1 �
2γ2ek2ω1I20L

n2c2ρ0Ω1ΓB
·

1

1� ξ2
; (5.1)

β3 �
2γ2ek2ω2I10L
n2c2ρ0Ω1ΓB

·
1

1� ξ2
; (5.2)

β5 �
�

2γ2ek2

ncρ0Ω1ΓB

�2

·
1

1� ξ2
· I10I20; (5.3)

ξ � Ω2
B −Ω2

1

Ω1ΓB
; (6)

where L is fiber length, I1 is CW intensity, I10 is initial CW
intensity, I2 is PW intensity, and I20 is initial PW intensity.

3. SOLUTION
The method used to obtain the dimensionless intensities Y 1

and Y 2 yields the following result for the dimensionless inten-
sities of the CW and PW waves:

Y 1�l� �
Y 1�0� − β1

β3

1 − β1
β3
· 1
Y1�0� · e

�Y1�0�−β1
β3
�·β3 ·l ; Y 1�0� ≠ β1∕β3; (7)

Y 2�l� � 1� GPW; Y 1�0� ≠ β1∕β3; (8)

Fig. 1. (a) Schematic arrangement of SBS in a fiber of length L. Pump
and probe configuration: A1�z�—continuous wave, A2�z�—probe
wave. (b) Schematic distribution of the pump and probe intensities
during SBS.
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GPW � e�Y1�0�−β1
β3
�·β3 ·l − 1

1 − β1
β3
· 1
Y1�0� · e

�Y1�0�−β1
β3
�·β3·l : (9)

The expression (9) is the gain the PW experiences. Expression
(8), rewritten in terms of dimensional intensities I1�z� and
I2�z�, coincides with the expression for the intensity of the
probe wave in [7].

The solution of the system (3) for the intensities (7) and (8)
is not complete until an expression for the output intensity
Y 1�0� of the CW is determined, which corresponds to the root
of the transcendental equation [7], shown in expression (10).
As such, previously known solutions, being formally analyti-
cal, require the numerical solution of expression (10). There-
fore, for all practical purposes, previously obtained solutions
are better qualified as hybrid solutions (i.e., partly numerical
or graphical and partly analytical):

1

Y 1�0� − β1
β3

· ln
�
β3
β1

· Y 1�0� ·
�
1� β1

β3
− Y 1�0�

��
− β3 � 0;

Y 1�0� ≠ β1∕β3: (10)

The analytical solution of Y 1�0� lies in transforming equation
(10) into a form suitable for analytical approximation. This
form is shown below as expression (11):

1 − Y 1�0� − β1 ·
eβ3 ·Y1�0�−β1 − 1
β3 · Y 1�0� − β1

� 0: (11)

The transcendental equation of (11) has a single root “Y 1�0�”
that depends only on two dimensionless parameters β1 and β3
[i.e., Y 1�0� � x�β1; β3�]. Additionally, this root falls within the
range [0,1], which represents the range of possible dimension-
less output intensities of the CW, giving it a physical
significance.

Using Eq. (8), we get the following expression for the out-
put intensity of the PW, assuming Y 1�0� is known:

Y 2�1� � 1� β3
β1

�1 − Y 1�0��: (12)

4. ANALYTIC SOLUTIONS
Fully analytic expressions (7) and (8) can only be complete
when an analytic expression for Y 1�0� is found. Since we
are looking for a solution placing no limits on Y 1�0�, let us
expand the LHS of the equation (11) into a MacLauren series
with respect to the variable β3. If we define, for convenience,
x � Y 1�0� and

F�β1; β3; x� � 1 − x − β1 ·
eβ3 ·x−β1 − 1
β3 · x − β1

;

then the corresponding MacLauren series is

F�β1; β3; x� � eβ1 − x − e−β1
X∞
n�1

Cn · xn · βn3 :

Thus, Eq. (11) takes a form suitable for finding approximate
analytical solutions:

eβ1 − x − e−β1
X∞
n�1

Cn · xn · βn3 � 0: (13)

A. Linear Approximation
Keeping only linear terms in Eq. (13), we yield the simplest
approximation as follows:

x � β1
�β1 � β3� · eβ1 − β3 · �1� β1�

: (14)

If better accuracy is required, the quadratic approximation is
in order.

B. Quadratic Approximation
Keeping β23 terms in (13), and after some tedious algebra, we
yield the next approximation as follows:

x � xlinear ·
1

1
2 �

�����������������������������������������������������
1
4 � x2linear · β

2
3 ·

eβ1−1−β1−
1
2β

2
1

β21

r ; (15)

where xlinear is the output intensity of the CW in the linear
approximation, defined in Eq. (14). In a similar way, one
can also get the cubic and quartic approximations, which
we do not show here due to their complexity.

5. RELATIVE ERROR
To gauge the accuracy of our analytical solutions (14) and
(15), we compare them to the numerically calculated solution
for the output dimensionless CW intensity. The transcendental
Eq. (11) easily lends itself to numerical solution with the use
of standard methods of computational physics.

A. Linear Approximation
The relative error is less than 33% in the worst case, on the
interval 0 < β1 < 25.4, 0 < β3 < 6.4, as it is shown in
Fig. 2 below.

Fig. 2. Relative error of linear approximation of 3D parametric model
of output CW. L � 1000 m, 0 < Ppump < 10 mW, 0 < Pprobe < 40 mW.
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B. Quadratic Approximation
The relative error of the quadratic approximation is shown in
Fig. 3 below.

The relative error of the quadratic approximation is 6.5% in
the worst case, which is more than three times smaller than
the relative error given by the linear approximation.

Notice, however, that except for a limited combination of
parameters for which there is an increase in relative error,
deemed to be the “worst case,” the relative error in most of
the calculations shown in Figs. 2 and 3 is close to 0%. This
confirms the utility of the analytic approximations.

6. 3D PARAMETRIC MODEL
An analytic 3D parametric model, attained by plotting the lin-
ear approximation solution as a function of dimensionless
parameters β1 and β3, is shown in Fig. 4.

As can be seen from Fig. 4, the linear approximation (14)
covers the entire range of values of output intensities of the
CW [i.e., from weak depletion, to full depletion when
Y 1�0� ∼ 0]. In spite of its simplicity, this 3D parametric model
is valid in a wide range of combinations of dimensionless
parameters β1 and β3.

Using Eq. (12), a similar 3D parametric model for the output
probe intensity is calculated and shown below in Fig. 5.

As expected, while the CW experiences depletion, the PW
experiences amplification.

7. 3D PARAMETRIC MODEL: SIMILAR AND
DISSIMILAR PROCESSES
The 3D parametric model for the output CW intensity allows for
the easy interpretation of the effects of pump and pulse powers
on the level of CWdepletion in the fiber. Parameters of the fiber
are described in Figs. 4 and 5, and the range of pump and pulse
powers 0 < Ppump < 10 mW, 0 < Pprobe < 40 mW, correspond
to the following range of dimensionless parameters β1 and
β3: 0 < β1 < 6.4; 0 < β3 < 25.4. This power range models
CW depletion from 0%–100%, corresponding to 0 < Y 1�0� < 1

in Fig. 4. For example, restricting the range of pulse power
to 1.6 mW < Pprobe < 40 mW yields a depletion of 55%–100%.
Further changes in pulse power change the level of depletion
accordingly. Being a very versatile model, a change in pulse
power, parameters of the fiber, or fiber length would alter
the restrictions on β1 and β3, therefore allowing for the “picking
and choosing” of the preferred level of depletion for the given
fiber. For example, in optical fibers it is often preferable to
avoid large depletion, which would require a pulse power of
<1.6 mW for the parameters given in Figs. 4 and 5.

The study of analytical solutions for the output CW inten-
sity Y 1�0� has led us to notice that certain patterns of similar-
ity exist between various amplification processes in each

Fig. 3. Relative error of quadratic approximation of 3D
parametric model of output CW. L � 1000 m, 0 < Ppump < 10 mW,
0 < Pprobe < 40 mW.

Fig. 4. Linear approximation of 3D parametric model of output CW.
Dimensionless output intensity of the CW versus dimensionless param-
eters β1 and β3. γe � 0.902, v � 5616 m∕s, n � 1.48, λ � 1.319 μm,
ρ0 � 2.21 g∕cm3, ΓB � 0.1 GHz L � 1000 m, 0 < Ppump < 10 mW,
0 < Pprobe < 40 mW.

Fig. 5. Linear approximation of 3D parametric model of output PW.
Dimensionless output intensity of the PW versus dimensionless param-
eters β1 and β3. γe � 0.902, v � 5616 m∕s, n � 1.48, λ � 1.319 μm,
ρ0 � 2.21 g∕cm3, ΓB � 0.1 GHz L � 1000 m, 0 < Ppump < 10 mW,
0 < Pprobe < 40 mW.
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regime, even though each process may be described by differ-
ent combinations of parameters of amplification. Namely, a
point on the 3D parametric model, corresponding to a subset
of Brillouin amplification processes, determined by the values
of the dimensionless parameters β1 and β3, is called the
representative point. Two Brillouin amplification processes
are called similar if they are characterized by the same
representative point. Conversely, two Brillouin amplification
processes are called dissimilar, if they are characterized by
different representative points. The degree of similarity
between two Brillouin amplification processes A and B is de-
termined by the distance between their representative points,
a bigger distance indicating a smaller degree of similarity, and
vice versa. Figure 4 above shows an example of two similar
and two dissimilar processes. In example 1 below, processes
A and B are represented by points A and B, while process C is
represented by point C, in Fig. 4.

Example 1.
Similar Processes: �β1�A � 3.18, �β3�A � 1.59, �β1�B �

3.18, �β3�B � 1.59
Process A: γe � 0.902, ω1 � 8.381097 · 105 GHz, ω2 �

8.380692 · 105 GHz, Ω1�4.053668 ·101 GHz, ΩB �
4.053668 · 101 GHz, I10 � 12000 W∕cm2, I20 � 24000 W∕cm2,
n � 1.45, c � 299792.458 km∕s, v � 5000 m∕s, ρ0 �
2.21 g∕cm3, ΓB � 0.1 GHz, L � 350 m

Process B: γe � 0.8, ω1 � 8.381097 · 105 GHz, ω2 �
8.380692 · 105 GHz, Ω1 � 4.053668 · 101 GHz, ΩB �
4.053668 · 101 GHz, I10 � 6000 W∕cm2, I20 � 12000 W∕cm2,
n � 1.15, c � 299792.458 km∕s, v � 5000 m∕s, ρ0 �
1.74 g∕cm3, ΓB � 0.1 GHz, L � 350 m

Dissimilar Processes: �β1�A � 3.18, �β3�A � 1.59,
�β1�C � 4.07 · 10−1, �β3�C � 6.79 · 10−2

Process A: γe � 0.902, ω1 � 8.381097 · 105 GHz,
ω2 � 8.380692 · 105 GHz, Ω1 � 4.053668 · 101 GHz, ΩB �
4.053668 · 101 GHz, I10 � 12000 W∕cm2, I20 � 24000 W∕cm2,
n � 1.45, c � 299792.458 km∕s, v � 5000 m∕s, ρ0 �
2.21 g∕cm3, ΓB � 0.1 GHz, L � 350 m

Process C: γe � 0.7, ω1 � 8.381097 · 105 GHz,
ω2 � 8.380692 · 105 GHz, Ω1 � 4.053668 · 101 GHz, ΩB �
4.053668 · 101 GHz, I10 � 8000 W∕cm2, I20 � 48000 W∕cm2,
n � 1.53, c � 299792.458 km∕s, v � 5000 m∕s, ρ0 �
2.21 g∕cm3, ΓB � 0.8 GHz, L � 350 m

8. APPLICATIONS
A. Fiber Sensing
Classification of the Brillouin amplification processes, in
terms of their degree of similarity as described above, may
have useful applications in the design of various devices based
on Brillouin scattering, such as fiber optic sensors. Indeed, a
design specification for a device is likely to require that a cer-
tain level of output signal be achieved within a certain margin
to ensure normal operation of the device. Practice shows that
there often exist severe design and technological constraints
for many such devices; therefore, though theoretical consid-
erations may suggest a combination of parameters of the
Brillouin amplification process that meets the design specifi-
cation requirements, this theoretical combination may be im-
practical, expensive, or simply unavailable technologically. In
this case, the 3D parametric model would be useful in finding
an alternate combination of parameters that is available tech-
nologically, and that either meets the requirements of the

design specification or is reasonably close to it. Such a model
would allow for the quick and inexpensive attainment of the
maximum utility and performance from such a device.

B. Photonic Logic
Another important application is one in photonic logic. In [14],
a possible construction of an optical NOT gate utilizing the
mechanisms of SBS has been described. To obtain a high
switching contrast of 77.6%, such as the one obtained in
[14], it is important to find the correct combination of fiber
parameters. The initial probe power, Pprobe, was chosen to
be the input signal, and an output CW power, Ppump-out, was
taken to be the output signal of the optical gate. The input
CW power was taken to be the reference signal, and was held
constant at Ppump � 10 mW. An input power of 0.1 mW was
assigned a logical value of “0,” while an input power of
10 mW was assigned a logical value of “1.” Output powers
of 9.0 and 1.33 mW were obtained for the logical inputs “0”
and “1,” respectively, yielding the switching contrast of
77.6%. In the configuration described in [14], a SMF-28 fiber
was used, of length 350 m, and a 1550 nm laser.

The Brillouin surface can be used to reconstruct this optical
gate for any combination of parameters, not only for the ones
used in [14]. For example, it is possible to reproduce the op-
tical logic gate of [14] for the SMF-28e fiber, 1310 nm laser,
and 1000 m fiber, used in this manuscript, by referring to
the Brillouin surface in Fig. 4. From Fig. 4, it is seen that a
reference input CW beam of 10 mW corresponds to
β3 � 6.4; hence all combinations of parameters must be on
the parametric curve corresponding to β3 � 6.4. Furthermore,
the output CW power of Ppump-out � 1.33 mW, corresponding
to the “0” output, in turn corresponds to β1 � 0.88. For the
parameters taken in this manuscript, this yields an input probe
power of Pprobe � 1.4 mW. Likewise, the output CW power of
P1-out � 9.0 mW, corresponding to the “1” output, in turn cor-
responds to β1 � 0.002. Again, for the parameters taken in this
manuscript, this yields an input probe power of
Pprobe � 0.003 mW. Hence, just by looking at the Brillouin sur-
face in Fig. 4, it is possible to find the combination of param-
eters of the fiber, to recreate the optical logic gate described in
[14]. Of course, the 3D parametric model may also be used to
construct an optical gate with a higher switching contrast than
the one disclosed in [14], or for different, more practical, input
powers.

9. SPECTRAL CHARACTERISTICS
A. Analytical Expressions
The starting point in the analysis of analytical expressions for
Brillouin output spectra is the previously derived expressions
for the output intensities of the CW: x�β1; β3�, expressed in
Eq. (14), and the PW: μ�β1; β3�, expressed in Eq. (12). Denoting
x � Y 1�0� and μ � Y 2�1�, the following standard approxima-
tions are made:

ΩB

Ω1
≈ 1;

ω2

ω2
≈ 1; ΩB �Ω1 ≈ 2ΩB: (16)

With these approximations in mind, we yield, instead of (14),
much simpler expressions:
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x�ξ� � b

�1� b� · eβ1�ξ� − 1 − β1�ξ�
; (17)

μ�ξ� � 1� 1
b
−

1

�1� b� · eβ1�ξ� − 1 − β1�ξ�
; (18)

where b � �I10∕I20�, ξ ≈ �ΩB − Ω1�∕�1∕2�ΓB.
And

β1�ξ� �
β10

1� ξ2
; β3�ξ� �

β30
1� ξ2

;

β10 �
2γ2ek2airI20L
cρ0ΓBΩB

; β30 �
2γ2ek2airI10L
cρ0ΓBΩB

;

x0 � x�0� � b
�1� b� · eβ10 − 1 − β10

: (19)

Analytical expressions for the full width at half-maximum
(FWHM) of the spectra may also be obtained, valid for 0%–
100% nonlinearity. For the simplicity of notation, we introduce
x0 � x�0�, μ0 � μ�0� and recall that b � β10∕β30:

FWHM

� 2

��������������������������������������������������������������������������������������
β10

1�x0
1−x0

�
1
2
�1
2

������������������������������������
1�2

1�b
b

1−x0
1�x0

s �
−1

vuut �units of ΓB�:

(20)

Using the expressions (7) and (8), we are able to describe
the behavior of the CW and PW at every coordinate inside
the fiber, and the corresponding output intensity spectra ob-
tained from expressions (17) and (18) above.

Looking at the probe wave spectrum in Fig. 6, we can see
that spectral distortion occurs with increasing probe wave
power. Energy is transferred from the pump (higher fre-
quency) to the probe wave (lower frequency). A strong probe

signal can induce pump depletion [15], since it causes the
pump to transfer more energy. However, since PCW < PPW,
saturation effects occur because there is not enough energy
supplied by the pump.

To better demonstrate the correlation between pump
depletion and probe spectrum distortion, the Ratio �
FWHM∕GPW is plotted versus pump depletion in Fig. 7 for
various probe powers, where FWHM is the full width at
half-maximum of the probe spectrum from expression (20),
and GPW is the gain of the probe wave from expression (9).
The more distorted the probe spectrum, the higher its ratio
value will be. Depletion of the pump was calculated using
expression (7).

As can be seen from Fig. 7, the stronger the probe power,
the greater the pump depletion. Consequently, the spectral
distortion of the probe spectrum is higher (higher ratio).
The Lorentzian shape of the spectrum then becomes flattened
and the FWHM increases, as saturation effects begin to be-
come prominent. As such, an output Lorentzian probe wave
spectrum (low ratio) is an indication of low pump depletion,
while an increase in spectral distortion (high ratio) is symp-
tomatic of an increase in pump depletion and saturation
effects.

Pump depletion is detrimental in the field of fiber-optic
sensing devices, since it causes a deviation of the peak fre-
quency of the recorded spectrum from the local Brillouin fre-
quency shift, resulting in a systematic error in temperature/
strain evaluation [15]. Hence, a Lorentzian probe spectral
shape is desired to ensure minimal pump depletion. It is pos-
sible to use the 3D parametric surface to avoid parameter
combinations, which would lead to such a spectral distortion
effect and, instead, choose parameter combinations that
would yield an approximate Lorentzian profile. This will be
described in more detail in Section 9.B.

B. Transition to a Lorentzian Spectra (Curvature)
As can be seen from Section 9.A, in the nonlinear case, the
general expression for the probe wave spectrum (18) does
not represent a Lorentzian profile. However, it can be seen
from Fig. 6, as well as experimental results (Fig. 10 below),
that for certain combinations of parameters, the output
PW spectrum is very close, if not indistinguishable, to the
Lorentzian spectrum. In this section we will determine the

Fig. 6. Analytical results, normalized intensity units. PPW (mW) = ○
0.01; ▵ 1.8; × 6.6; ◻ 12.1; ▿ 17.1; + 22.4; * 27.2; - - - 31.8; ─ 36.3.
n � 1.48, γe � 0.902, λ � 1319 nm, ρ0 � 2.21 g∕cm3, v � 5616 m∕s,
L � 1000 m, ΓB � 0.1 GHz, PCW � 1.0 mW.

Fig. 7. Pump depletion as a function of probe spectral distortion.
PPW (mW) = ○ 0.01; ▵ 1.8; × 6.6; ◻ 12.1; ▿ 17.1; + 22.4; * 27.2;
▪ 31.8; ♦ 36.3. n � 1.48, γe � 0.902, λ � 1319 nm, ρ0 � 2.21 g∕cm3,
v � 5616 m∕s, L � 1000 m, ΓB � 0.1 GHz, PCW � 1.0 mW.
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conditions, within a given level of tolerance, for which the out-
put CW and PW spectra have a Lorentzian profile.

Since a purely Lorentzian spectrum is characteristic of lin-
ear systems, it is expected to occur for small nonlinearities
(i.e., for small β10, β30). Expanding the expressions (17) and
(18) into a power series with respect to β10 and β30, we get
the following linear approximations:

P�ξ� � −x�ξ� � 1 � −
β30

1� ξ2
−
1
2
β30�β30 − β10�
�1� ξ2�2 …; (21)

S�ξ� � μ�ξ� − 1 � β10
1� ξ2

� 1
2
β30�β30 − β10�
�1� ξ2�2 …: (22)

It can be seen from Eqs. (21) and (22) that the first (linear)
term is representative of a Lorentzian profile, (while higher
terms distort it). Ensuring that these distortions are much
smaller than the Lorentzian term, we require that

β10 ≪ 1; β30 ≪ 1: (23)

For a nonlinear phenomenon like SBS, the spectral shape
inevitably deviates from the Lorentzian profile as either the
pump power (β30), or probe power (β10) are increased. It
can be seen from Fig. 6 that the spectrum becomes flattened
quicker than it widens in the onset of spectral distortions. As
such, the sharpness of the spectral tip is more sensitive to
changes in the spectral shape, as compared to the FWHM
of the spectrum. For this reason, we measure the deviation
of the spectral shape from the Lorentzian shape by using
the relative deviation of the curvature, CR, of the distorted
spectral tip as compared to the Lorentzian spectral tip,
according to the following expression:

CR �
����CCW − CLorentz

CLorentz

����: (24)

Using the standard definition of the curvature of the plain
curve, as well as expressions (17) and (18), respectively,
we yield the following expressions for the curvatures of the
CW and PW, CCW and CPW, respectively:

CCW � 2β10x0�β30x0 � 1�; (25)

CPW � −2β30x0�β30x0 � 1�; (26)

where x0, β1 and β3 are defined in Eq. (19). From expressions
(21) and (22), we find the curvature of the corresponding
Lorentzian profiles (maximum curvature) for the CW and
PW, respectively:

CLorentz � 2β10 for theCW; (27)

CLorentz � −2β30 for the PW: (28)

Given the tolerance δ, we find the following inequality for a
quasi-Lorentzian spectral shape:

CR < δ: (29)

The range of β1 and β3 values for which the tolerance does not
exceed δ � 0.20 from the Lorentzian curvature is shown in
Fig. 8. For clarity, the scales along the β1 and β3 axes are dif-
ferent. A tolerance of 20% cannot be achieved for β1-values
exceeding 0.50, corresponding to a power range of 0 < PPW <
0.8 mW for fiber parameters in Fig. 6, while it is possible to
choose any β3-value, which corresponds to the power range
0 < PCW < 10 mW, provided it is coupled to the correct
β1-value.

This reflects the current theory in which weak probe
powers are usually utilized for sensing applications, since this
is the regime in which a Lorentz-like profile may be achieved.
As such, fiber and strain measurements (measurements of the
probe wave) are best conducted within the β-parameters
shown in Fig. 8, provided that other factors, not considered
here, do not require otherwise.

10. EXPERIMENT
A. Experimental Setup
The experimental setup is shown in Fig. 9. Two narrow line-
width (3 kHz) fiber lasers operating at 1310 nm are used to
provide the pump and probe waves, respectively. The fre-
quency difference is locked by a frequency counter and is
automatically swept to cover the Brillouin range. A 12-GHz
bandwidth high-speed detector is used to measure the beating
signal of the pump and probe waves, providing feedback to
the frequency counter to lock their frequency differences.
The pump laser is launched into an optical circulator, which
passes through into the fiber under test (FUT), which is a 1 km
Corning SMF-28e. The probe laser is launched into the FUT, to
interact with the pump wave, after which it re-enters the
optical circulator.

B. Experimental Results
As can be seen from Fig. 10, the same kind of spectral distor-
tion can be seen in the experimental results as shown in the
analytical expression of Fig. 6. For both the experimental and

Fig. 8. Shaded area depicts range of β1 and β3 values that yield
curvatures within 20% of the Lorentz curvature for both CW and
PW spectra.
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theoretical results, the Lorentzian spectrum is maintained for
low depletion (i.e., when PPW ≲ PCW), the intensity drop at
resonance is progressively more gradual, and the shape be-
comes flatter. The second, smaller peak seen at 12,925 MHz
is a result of second-order Brillouin scattering effects [16],
which are not taken into consideration in this paper.

11. CONCLUSION
Accurate analytic expressions have been obtained for
Brillouin amplification, describing the intensities of the CW
and PW for any coordinate inside the fiber, without any under-
lying assumptions about the behavior of the pump or probe
waves. Among these solutions are (i) the linear approximation
which gives a maximum relative error of 33% and (ii) the quad-
ratic approximation which gives a maximum relative error of
6.5%. The relative error for the above analytic solutions
quickly decreases to ∼0% for the majority of parameters.

Additionally, analytic solutions for the output pump and
probe spectra have been obtained to good accuracy, as well
as an expression for the FWHM. These solutions model a
spectral distortion effect, which takes place at high pump
depletions and high probe powers, and is confirmed
experimentally. In sensing applications, the 3D parametric

model may be used to avoid parameter combinations, which
yield unwanted spectral distortion effects, such as in distrib-
uted sensing where CW depletion is substantial.

The 3D parametric model can also be used to classify the
similarity between various Brillouin amplification processes,
making it possible to attain the same CW output intensity with
a different collection of parameters of the fiber. Such an ap-
plication has various uses in the field of photonic logic, where
reconstruction of optical logic gates for various fiber param-
eters is required.
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